Towards a leptospirosis early warning system in northeastern Argentina
- Autores
- Lotto Batista, Martín; Rees, Eleanor M.; Gomez, Andrea Alejandra; Lopez, Maria Soledad; Castell, Stefanie; Kucharski, Adam J.; Ghozzi, Stéphane; Muller, Gabriela Viviana; Lowe, Rachel
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Leptospirosis is a zoonotic disease with a high burden in Latin America, including northeastern Argentina, where flooding events linked to El Niño are associated with leptospirosis outbreaks. The aim of this study was to evaluate the value of using hydrometeorological indicators to predict leptospirosis outbreaks in this region. We quantified the effects of El Niño, precipitation, and river height on leptospirosis risk in Santa Fe and Entre Ríos provinces between 2009 and 2020, using a Bayesian modelling framework. Based on several goodness of fit statistics, we selected candidate models using a long-lead El Niño 3.4 index and shorter lead local climate variables. We then tested predictive performance to detect leptospirosis outbreaks using a two-stage early warning approach. Three-month lagged Niño 3.4 index and one-month lagged precipitation and river height were positively associated with an increase in leptospirosis cases in both provinces. El Niño models correctly detected 89% of outbreaks, while short-lead local models gave similar detection rates with a lower number of false positives. Our results show that climatic events are strong drivers of leptospirosis incidence in northeastern Argentina. Therefore, a leptospirosis outbreak prediction tool driven by hydrometeorological indicators could form part of an early warning and response system in the region.
Fil: Lotto Batista, Martín. Helmholtz Centre For Infection Research; Alemania
Fil: Rees, Eleanor M.. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España
Fil: Gomez, Andrea Alejandra. Universidad Nacional del Litoral. Facultad de Ingenieria y Ciencias Hidricas. Centro de Estudios de Variabilidad y Cambio Climatico.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Lopez, Maria Soledad. Universidad Nacional del Litoral. Facultad de Ingenieria y Ciencias Hidricas. Centro de Estudios de Variabilidad y Cambio Climatico.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Castell, Stefanie. Helmholtz Centre For Infection Research; Alemania
Fil: Kucharski, Adam J.. Centre For Mathematical Modelling Of Infectious Diseas; Reino Unido
Fil: Ghozzi, Stéphane. Helmholtz Centre For Infection Research; Alemania
Fil: Muller, Gabriela Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingenieria y Ciencias Hidricas. Centro de Estudios de Variabilidad y Cambio Climatico.; Argentina
Fil: Lowe, Rachel. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España - Materia
-
BAYESIAN MODELLING
CLIMATE
EARLY WARNING SYSTEM
EL NIÑO
LEPTOSPIROSIS
OUTBREAK PREDICTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/225006
Ver los metadatos del registro completo
id |
CONICETDig_6bf2bd0e4f89201ee2653f5d1493d7b7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/225006 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Towards a leptospirosis early warning system in northeastern ArgentinaLotto Batista, MartínRees, Eleanor M.Gomez, Andrea AlejandraLopez, Maria SoledadCastell, StefanieKucharski, Adam J.Ghozzi, StéphaneMuller, Gabriela VivianaLowe, RachelBAYESIAN MODELLINGCLIMATEEARLY WARNING SYSTEMEL NIÑOLEPTOSPIROSISOUTBREAK PREDICTIONhttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Leptospirosis is a zoonotic disease with a high burden in Latin America, including northeastern Argentina, where flooding events linked to El Niño are associated with leptospirosis outbreaks. The aim of this study was to evaluate the value of using hydrometeorological indicators to predict leptospirosis outbreaks in this region. We quantified the effects of El Niño, precipitation, and river height on leptospirosis risk in Santa Fe and Entre Ríos provinces between 2009 and 2020, using a Bayesian modelling framework. Based on several goodness of fit statistics, we selected candidate models using a long-lead El Niño 3.4 index and shorter lead local climate variables. We then tested predictive performance to detect leptospirosis outbreaks using a two-stage early warning approach. Three-month lagged Niño 3.4 index and one-month lagged precipitation and river height were positively associated with an increase in leptospirosis cases in both provinces. El Niño models correctly detected 89% of outbreaks, while short-lead local models gave similar detection rates with a lower number of false positives. Our results show that climatic events are strong drivers of leptospirosis incidence in northeastern Argentina. Therefore, a leptospirosis outbreak prediction tool driven by hydrometeorological indicators could form part of an early warning and response system in the region.Fil: Lotto Batista, Martín. Helmholtz Centre For Infection Research; AlemaniaFil: Rees, Eleanor M.. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; EspañaFil: Gomez, Andrea Alejandra. Universidad Nacional del Litoral. Facultad de Ingenieria y Ciencias Hidricas. Centro de Estudios de Variabilidad y Cambio Climatico.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Lopez, Maria Soledad. Universidad Nacional del Litoral. Facultad de Ingenieria y Ciencias Hidricas. Centro de Estudios de Variabilidad y Cambio Climatico.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Castell, Stefanie. Helmholtz Centre For Infection Research; AlemaniaFil: Kucharski, Adam J.. Centre For Mathematical Modelling Of Infectious Diseas; Reino UnidoFil: Ghozzi, Stéphane. Helmholtz Centre For Infection Research; AlemaniaFil: Muller, Gabriela Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingenieria y Ciencias Hidricas. Centro de Estudios de Variabilidad y Cambio Climatico.; ArgentinaFil: Lowe, Rachel. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; EspañaThe Royal Society2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/225006Lotto Batista, Martín; Rees, Eleanor M.; Gomez, Andrea Alejandra; Lopez, Maria Soledad; Castell, Stefanie; et al.; Towards a leptospirosis early warning system in northeastern Argentina; The Royal Society; Journal of the Royal Society Interface; 20; 202; 5-2023; 1-81742-5689CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsif.2023.0069info:eu-repo/semantics/altIdentifier/doi/10.1098/rsif.2023.0069info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:05:59Zoai:ri.conicet.gov.ar:11336/225006instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:06:00.228CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Towards a leptospirosis early warning system in northeastern Argentina |
title |
Towards a leptospirosis early warning system in northeastern Argentina |
spellingShingle |
Towards a leptospirosis early warning system in northeastern Argentina Lotto Batista, Martín BAYESIAN MODELLING CLIMATE EARLY WARNING SYSTEM EL NIÑO LEPTOSPIROSIS OUTBREAK PREDICTION |
title_short |
Towards a leptospirosis early warning system in northeastern Argentina |
title_full |
Towards a leptospirosis early warning system in northeastern Argentina |
title_fullStr |
Towards a leptospirosis early warning system in northeastern Argentina |
title_full_unstemmed |
Towards a leptospirosis early warning system in northeastern Argentina |
title_sort |
Towards a leptospirosis early warning system in northeastern Argentina |
dc.creator.none.fl_str_mv |
Lotto Batista, Martín Rees, Eleanor M. Gomez, Andrea Alejandra Lopez, Maria Soledad Castell, Stefanie Kucharski, Adam J. Ghozzi, Stéphane Muller, Gabriela Viviana Lowe, Rachel |
author |
Lotto Batista, Martín |
author_facet |
Lotto Batista, Martín Rees, Eleanor M. Gomez, Andrea Alejandra Lopez, Maria Soledad Castell, Stefanie Kucharski, Adam J. Ghozzi, Stéphane Muller, Gabriela Viviana Lowe, Rachel |
author_role |
author |
author2 |
Rees, Eleanor M. Gomez, Andrea Alejandra Lopez, Maria Soledad Castell, Stefanie Kucharski, Adam J. Ghozzi, Stéphane Muller, Gabriela Viviana Lowe, Rachel |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
BAYESIAN MODELLING CLIMATE EARLY WARNING SYSTEM EL NIÑO LEPTOSPIROSIS OUTBREAK PREDICTION |
topic |
BAYESIAN MODELLING CLIMATE EARLY WARNING SYSTEM EL NIÑO LEPTOSPIROSIS OUTBREAK PREDICTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.3 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Leptospirosis is a zoonotic disease with a high burden in Latin America, including northeastern Argentina, where flooding events linked to El Niño are associated with leptospirosis outbreaks. The aim of this study was to evaluate the value of using hydrometeorological indicators to predict leptospirosis outbreaks in this region. We quantified the effects of El Niño, precipitation, and river height on leptospirosis risk in Santa Fe and Entre Ríos provinces between 2009 and 2020, using a Bayesian modelling framework. Based on several goodness of fit statistics, we selected candidate models using a long-lead El Niño 3.4 index and shorter lead local climate variables. We then tested predictive performance to detect leptospirosis outbreaks using a two-stage early warning approach. Three-month lagged Niño 3.4 index and one-month lagged precipitation and river height were positively associated with an increase in leptospirosis cases in both provinces. El Niño models correctly detected 89% of outbreaks, while short-lead local models gave similar detection rates with a lower number of false positives. Our results show that climatic events are strong drivers of leptospirosis incidence in northeastern Argentina. Therefore, a leptospirosis outbreak prediction tool driven by hydrometeorological indicators could form part of an early warning and response system in the region. Fil: Lotto Batista, Martín. Helmholtz Centre For Infection Research; Alemania Fil: Rees, Eleanor M.. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España Fil: Gomez, Andrea Alejandra. Universidad Nacional del Litoral. Facultad de Ingenieria y Ciencias Hidricas. Centro de Estudios de Variabilidad y Cambio Climatico.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Lopez, Maria Soledad. Universidad Nacional del Litoral. Facultad de Ingenieria y Ciencias Hidricas. Centro de Estudios de Variabilidad y Cambio Climatico.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Castell, Stefanie. Helmholtz Centre For Infection Research; Alemania Fil: Kucharski, Adam J.. Centre For Mathematical Modelling Of Infectious Diseas; Reino Unido Fil: Ghozzi, Stéphane. Helmholtz Centre For Infection Research; Alemania Fil: Muller, Gabriela Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingenieria y Ciencias Hidricas. Centro de Estudios de Variabilidad y Cambio Climatico.; Argentina Fil: Lowe, Rachel. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España |
description |
Leptospirosis is a zoonotic disease with a high burden in Latin America, including northeastern Argentina, where flooding events linked to El Niño are associated with leptospirosis outbreaks. The aim of this study was to evaluate the value of using hydrometeorological indicators to predict leptospirosis outbreaks in this region. We quantified the effects of El Niño, precipitation, and river height on leptospirosis risk in Santa Fe and Entre Ríos provinces between 2009 and 2020, using a Bayesian modelling framework. Based on several goodness of fit statistics, we selected candidate models using a long-lead El Niño 3.4 index and shorter lead local climate variables. We then tested predictive performance to detect leptospirosis outbreaks using a two-stage early warning approach. Three-month lagged Niño 3.4 index and one-month lagged precipitation and river height were positively associated with an increase in leptospirosis cases in both provinces. El Niño models correctly detected 89% of outbreaks, while short-lead local models gave similar detection rates with a lower number of false positives. Our results show that climatic events are strong drivers of leptospirosis incidence in northeastern Argentina. Therefore, a leptospirosis outbreak prediction tool driven by hydrometeorological indicators could form part of an early warning and response system in the region. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/225006 Lotto Batista, Martín; Rees, Eleanor M.; Gomez, Andrea Alejandra; Lopez, Maria Soledad; Castell, Stefanie; et al.; Towards a leptospirosis early warning system in northeastern Argentina; The Royal Society; Journal of the Royal Society Interface; 20; 202; 5-2023; 1-8 1742-5689 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/225006 |
identifier_str_mv |
Lotto Batista, Martín; Rees, Eleanor M.; Gomez, Andrea Alejandra; Lopez, Maria Soledad; Castell, Stefanie; et al.; Towards a leptospirosis early warning system in northeastern Argentina; The Royal Society; Journal of the Royal Society Interface; 20; 202; 5-2023; 1-8 1742-5689 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsif.2023.0069 info:eu-repo/semantics/altIdentifier/doi/10.1098/rsif.2023.0069 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
The Royal Society |
publisher.none.fl_str_mv |
The Royal Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083203041853440 |
score |
13.22299 |