Information theoretic measures and their applications

Autores
Rosso, Osvaldo Anibal; Montani, Fernando Fabián
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The concept of entropy, an ever-growing physical magnitude that measured the degree of decay of order in a physical system, was introduced by Rudolf Clausius in 1865 through an elegant formulation of the second law of thermodynamics. Seven years later, in 1872, Ludwig Boltzmann proved the famous H-theorem, showing that the quantity H always decreases in time, and in the case of perfect gas in equilibrium, the quantity H was related to Clausius’ entropyS. The dynamical approach of Boltzmann, together with the elegant theory of statistical ensembles at equilibrium proposed by Josiah Willard Gibbs, led to the Boltzmann–Gibbs theory of statistical mechanics, which represents one of the most successful theoretical frameworks of physics. In fact, with the introduction of entropy, thermodynamics became a model of theoretical science.
Fil: Rosso, Osvaldo Anibal. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
information processing.
numerical and computational sciences
complex networks
big data analysis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/143361

id CONICETDig_6bae74787f824e13e97e6e46b28581ae
oai_identifier_str oai:ri.conicet.gov.ar:11336/143361
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Information theoretic measures and their applicationsRosso, Osvaldo AnibalMontani, Fernando Fabiáninformation processing.numerical and computational sciencescomplex networksbig data analysishttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The concept of entropy, an ever-growing physical magnitude that measured the degree of decay of order in a physical system, was introduced by Rudolf Clausius in 1865 through an elegant formulation of the second law of thermodynamics. Seven years later, in 1872, Ludwig Boltzmann proved the famous H-theorem, showing that the quantity H always decreases in time, and in the case of perfect gas in equilibrium, the quantity H was related to Clausius’ entropyS. The dynamical approach of Boltzmann, together with the elegant theory of statistical ensembles at equilibrium proposed by Josiah Willard Gibbs, led to the Boltzmann–Gibbs theory of statistical mechanics, which represents one of the most successful theoretical frameworks of physics. In fact, with the introduction of entropy, thermodynamics became a model of theoretical science.Fil: Rosso, Osvaldo Anibal. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaMultidisciplinary Digital Publishing Institute2020-12-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143361Rosso, Osvaldo Anibal; Montani, Fernando Fabián; Information theoretic measures and their applications; Multidisciplinary Digital Publishing Institute; Entropy; 22; 12; 7-12-2020; 1382-13901099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/e22121382info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/22/12/1382info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:11Zoai:ri.conicet.gov.ar:11336/143361instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:11.407CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Information theoretic measures and their applications
title Information theoretic measures and their applications
spellingShingle Information theoretic measures and their applications
Rosso, Osvaldo Anibal
information processing.
numerical and computational sciences
complex networks
big data analysis
title_short Information theoretic measures and their applications
title_full Information theoretic measures and their applications
title_fullStr Information theoretic measures and their applications
title_full_unstemmed Information theoretic measures and their applications
title_sort Information theoretic measures and their applications
dc.creator.none.fl_str_mv Rosso, Osvaldo Anibal
Montani, Fernando Fabián
author Rosso, Osvaldo Anibal
author_facet Rosso, Osvaldo Anibal
Montani, Fernando Fabián
author_role author
author2 Montani, Fernando Fabián
author2_role author
dc.subject.none.fl_str_mv information processing.
numerical and computational sciences
complex networks
big data analysis
topic information processing.
numerical and computational sciences
complex networks
big data analysis
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The concept of entropy, an ever-growing physical magnitude that measured the degree of decay of order in a physical system, was introduced by Rudolf Clausius in 1865 through an elegant formulation of the second law of thermodynamics. Seven years later, in 1872, Ludwig Boltzmann proved the famous H-theorem, showing that the quantity H always decreases in time, and in the case of perfect gas in equilibrium, the quantity H was related to Clausius’ entropyS. The dynamical approach of Boltzmann, together with the elegant theory of statistical ensembles at equilibrium proposed by Josiah Willard Gibbs, led to the Boltzmann–Gibbs theory of statistical mechanics, which represents one of the most successful theoretical frameworks of physics. In fact, with the introduction of entropy, thermodynamics became a model of theoretical science.
Fil: Rosso, Osvaldo Anibal. Universidade Federal de Alagoas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description The concept of entropy, an ever-growing physical magnitude that measured the degree of decay of order in a physical system, was introduced by Rudolf Clausius in 1865 through an elegant formulation of the second law of thermodynamics. Seven years later, in 1872, Ludwig Boltzmann proved the famous H-theorem, showing that the quantity H always decreases in time, and in the case of perfect gas in equilibrium, the quantity H was related to Clausius’ entropyS. The dynamical approach of Boltzmann, together with the elegant theory of statistical ensembles at equilibrium proposed by Josiah Willard Gibbs, led to the Boltzmann–Gibbs theory of statistical mechanics, which represents one of the most successful theoretical frameworks of physics. In fact, with the introduction of entropy, thermodynamics became a model of theoretical science.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/143361
Rosso, Osvaldo Anibal; Montani, Fernando Fabián; Information theoretic measures and their applications; Multidisciplinary Digital Publishing Institute; Entropy; 22; 12; 7-12-2020; 1382-1390
1099-4300
CONICET Digital
CONICET
url http://hdl.handle.net/11336/143361
identifier_str_mv Rosso, Osvaldo Anibal; Montani, Fernando Fabián; Information theoretic measures and their applications; Multidisciplinary Digital Publishing Institute; Entropy; 22; 12; 7-12-2020; 1382-1390
1099-4300
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/e22121382
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/22/12/1382
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613866473914368
score 13.070432