Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography
- Autores
- Thomsen, Felix Sebastian Leo; Iarussi, Emmanuel; Borggrefe, Jan; Boyd, Steven K.; Wang, Yue; Battié, Michele C.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- BackgroundData-driven development of medical biomarkers of bone requires a large amount of image data but physical measurements are generally too restricted in size and quality to perform a robust training.PurposeThis study aims to provide a reliable in silico method for the generation of realistic bone microstructure with defined microarchitectural properties. Synthetic bone samples may improve training of neural networks and serve for the development of new diagnostic parameters of bone architecture and mineralization.MethodsOne hundred-fifty cadaveric lumbar vertebrae from 48 different male human spines were scanned with a high resolution peripheral quantitative CT. After prepocessing the scans, we extracted 10,795 purely spongeous bone patches, each with a side length of 32 voxels (5 mm) and isotropic voxel size of 164 μm. We trained a volumetric generative adversarial network (GAN) in a progressive manner to create synthetic microstructural bone samples. We then added a style transfer technique to allow the generation of synthetic samples with defined microstructure and gestalt by simultaneously optimizing two entangled loss functions. Reliability testing was performed by comparing real and synthetic bone samples on 10 well-understood microstructural parameters.ResultsThe method was able to create synthetic bone samples with visual and quantitative properties that effectively matched with the real samples. The GAN contained a well-formed latent space allowing to smoothly morph bone samples by their microstructural parameters, visual appearance or both. Optimum performance has been obtained for bone samples with voxel size 32 × 32 × 32, but also samples of size 64 × 64 × 64 could be synthesized.ConclusionsOur two-step-approach combines a parameter-agnostic GAN with a parameter-specific style transfer technique. It allows to generate an unlimited anonymous database of microstructural bone samples with sufficient realism to be used for the development of new data-driven methods of bone-biomarkers. Particularly, the style transfer technique can generate datasets of bone samples with specific conditions to simulate certain bone pathologies.
Fil: Thomsen, Felix Sebastian Leo. Ruhr Universität Bochum; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; Argentina
Fil: Iarussi, Emmanuel. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Borggrefe, Jan. Ruhr Universität Bochum; Alemania
Fil: Boyd, Steven K.. University of Calgary; Canadá
Fil: Wang, Yue. Zhejiang University School Of Medicine; China
Fil: Battié, Michele C.. University of Alberta; Canadá - Materia
-
BONE MICROSTRUCTURE
GESTALT
PROGRESSIVE GENERATIVE ADVERSARIAL NETWORK
STRUCTURAL MORPHING
XTREMECT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/220680
Ver los metadatos del registro completo
id |
CONICETDig_6bac0e9bfa314f3f6839c88b1b6e8f0e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/220680 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomographyThomsen, Felix Sebastian LeoIarussi, EmmanuelBorggrefe, JanBoyd, Steven K.Wang, YueBattié, Michele C.BONE MICROSTRUCTUREGESTALTPROGRESSIVE GENERATIVE ADVERSARIAL NETWORKSTRUCTURAL MORPHINGXTREMECThttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1BackgroundData-driven development of medical biomarkers of bone requires a large amount of image data but physical measurements are generally too restricted in size and quality to perform a robust training.PurposeThis study aims to provide a reliable in silico method for the generation of realistic bone microstructure with defined microarchitectural properties. Synthetic bone samples may improve training of neural networks and serve for the development of new diagnostic parameters of bone architecture and mineralization.MethodsOne hundred-fifty cadaveric lumbar vertebrae from 48 different male human spines were scanned with a high resolution peripheral quantitative CT. After prepocessing the scans, we extracted 10,795 purely spongeous bone patches, each with a side length of 32 voxels (5 mm) and isotropic voxel size of 164 μm. We trained a volumetric generative adversarial network (GAN) in a progressive manner to create synthetic microstructural bone samples. We then added a style transfer technique to allow the generation of synthetic samples with defined microstructure and gestalt by simultaneously optimizing two entangled loss functions. Reliability testing was performed by comparing real and synthetic bone samples on 10 well-understood microstructural parameters.ResultsThe method was able to create synthetic bone samples with visual and quantitative properties that effectively matched with the real samples. The GAN contained a well-formed latent space allowing to smoothly morph bone samples by their microstructural parameters, visual appearance or both. Optimum performance has been obtained for bone samples with voxel size 32 × 32 × 32, but also samples of size 64 × 64 × 64 could be synthesized.ConclusionsOur two-step-approach combines a parameter-agnostic GAN with a parameter-specific style transfer technique. It allows to generate an unlimited anonymous database of microstructural bone samples with sufficient realism to be used for the development of new data-driven methods of bone-biomarkers. Particularly, the style transfer technique can generate datasets of bone samples with specific conditions to simulate certain bone pathologies.Fil: Thomsen, Felix Sebastian Leo. Ruhr Universität Bochum; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; ArgentinaFil: Iarussi, Emmanuel. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Borggrefe, Jan. Ruhr Universität Bochum; AlemaniaFil: Boyd, Steven K.. University of Calgary; CanadáFil: Wang, Yue. Zhejiang University School Of Medicine; ChinaFil: Battié, Michele C.. University of Alberta; CanadáAmerican Association of Physicists in Medicine2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/220680Thomsen, Felix Sebastian Leo; Iarussi, Emmanuel; Borggrefe, Jan; Boyd, Steven K.; Wang, Yue; et al.; Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography; American Association of Physicists in Medicine; Medical Physics; 50; 11; 6-2023; 6943-69540094-2405CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.16482info:eu-repo/semantics/altIdentifier/doi/10.1002/mp.16482info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:20Zoai:ri.conicet.gov.ar:11336/220680instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:20.973CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography |
title |
Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography |
spellingShingle |
Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography Thomsen, Felix Sebastian Leo BONE MICROSTRUCTURE GESTALT PROGRESSIVE GENERATIVE ADVERSARIAL NETWORK STRUCTURAL MORPHING XTREMECT |
title_short |
Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography |
title_full |
Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography |
title_fullStr |
Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography |
title_full_unstemmed |
Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography |
title_sort |
Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography |
dc.creator.none.fl_str_mv |
Thomsen, Felix Sebastian Leo Iarussi, Emmanuel Borggrefe, Jan Boyd, Steven K. Wang, Yue Battié, Michele C. |
author |
Thomsen, Felix Sebastian Leo |
author_facet |
Thomsen, Felix Sebastian Leo Iarussi, Emmanuel Borggrefe, Jan Boyd, Steven K. Wang, Yue Battié, Michele C. |
author_role |
author |
author2 |
Iarussi, Emmanuel Borggrefe, Jan Boyd, Steven K. Wang, Yue Battié, Michele C. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
BONE MICROSTRUCTURE GESTALT PROGRESSIVE GENERATIVE ADVERSARIAL NETWORK STRUCTURAL MORPHING XTREMECT |
topic |
BONE MICROSTRUCTURE GESTALT PROGRESSIVE GENERATIVE ADVERSARIAL NETWORK STRUCTURAL MORPHING XTREMECT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
BackgroundData-driven development of medical biomarkers of bone requires a large amount of image data but physical measurements are generally too restricted in size and quality to perform a robust training.PurposeThis study aims to provide a reliable in silico method for the generation of realistic bone microstructure with defined microarchitectural properties. Synthetic bone samples may improve training of neural networks and serve for the development of new diagnostic parameters of bone architecture and mineralization.MethodsOne hundred-fifty cadaveric lumbar vertebrae from 48 different male human spines were scanned with a high resolution peripheral quantitative CT. After prepocessing the scans, we extracted 10,795 purely spongeous bone patches, each with a side length of 32 voxels (5 mm) and isotropic voxel size of 164 μm. We trained a volumetric generative adversarial network (GAN) in a progressive manner to create synthetic microstructural bone samples. We then added a style transfer technique to allow the generation of synthetic samples with defined microstructure and gestalt by simultaneously optimizing two entangled loss functions. Reliability testing was performed by comparing real and synthetic bone samples on 10 well-understood microstructural parameters.ResultsThe method was able to create synthetic bone samples with visual and quantitative properties that effectively matched with the real samples. The GAN contained a well-formed latent space allowing to smoothly morph bone samples by their microstructural parameters, visual appearance or both. Optimum performance has been obtained for bone samples with voxel size 32 × 32 × 32, but also samples of size 64 × 64 × 64 could be synthesized.ConclusionsOur two-step-approach combines a parameter-agnostic GAN with a parameter-specific style transfer technique. It allows to generate an unlimited anonymous database of microstructural bone samples with sufficient realism to be used for the development of new data-driven methods of bone-biomarkers. Particularly, the style transfer technique can generate datasets of bone samples with specific conditions to simulate certain bone pathologies. Fil: Thomsen, Felix Sebastian Leo. Ruhr Universität Bochum; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; Argentina Fil: Iarussi, Emmanuel. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Borggrefe, Jan. Ruhr Universität Bochum; Alemania Fil: Boyd, Steven K.. University of Calgary; Canadá Fil: Wang, Yue. Zhejiang University School Of Medicine; China Fil: Battié, Michele C.. University of Alberta; Canadá |
description |
BackgroundData-driven development of medical biomarkers of bone requires a large amount of image data but physical measurements are generally too restricted in size and quality to perform a robust training.PurposeThis study aims to provide a reliable in silico method for the generation of realistic bone microstructure with defined microarchitectural properties. Synthetic bone samples may improve training of neural networks and serve for the development of new diagnostic parameters of bone architecture and mineralization.MethodsOne hundred-fifty cadaveric lumbar vertebrae from 48 different male human spines were scanned with a high resolution peripheral quantitative CT. After prepocessing the scans, we extracted 10,795 purely spongeous bone patches, each with a side length of 32 voxels (5 mm) and isotropic voxel size of 164 μm. We trained a volumetric generative adversarial network (GAN) in a progressive manner to create synthetic microstructural bone samples. We then added a style transfer technique to allow the generation of synthetic samples with defined microstructure and gestalt by simultaneously optimizing two entangled loss functions. Reliability testing was performed by comparing real and synthetic bone samples on 10 well-understood microstructural parameters.ResultsThe method was able to create synthetic bone samples with visual and quantitative properties that effectively matched with the real samples. The GAN contained a well-formed latent space allowing to smoothly morph bone samples by their microstructural parameters, visual appearance or both. Optimum performance has been obtained for bone samples with voxel size 32 × 32 × 32, but also samples of size 64 × 64 × 64 could be synthesized.ConclusionsOur two-step-approach combines a parameter-agnostic GAN with a parameter-specific style transfer technique. It allows to generate an unlimited anonymous database of microstructural bone samples with sufficient realism to be used for the development of new data-driven methods of bone-biomarkers. Particularly, the style transfer technique can generate datasets of bone samples with specific conditions to simulate certain bone pathologies. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/220680 Thomsen, Felix Sebastian Leo; Iarussi, Emmanuel; Borggrefe, Jan; Boyd, Steven K.; Wang, Yue; et al.; Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography; American Association of Physicists in Medicine; Medical Physics; 50; 11; 6-2023; 6943-6954 0094-2405 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/220680 |
identifier_str_mv |
Thomsen, Felix Sebastian Leo; Iarussi, Emmanuel; Borggrefe, Jan; Boyd, Steven K.; Wang, Yue; et al.; Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography; American Association of Physicists in Medicine; Medical Physics; 50; 11; 6-2023; 6943-6954 0094-2405 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.16482 info:eu-repo/semantics/altIdentifier/doi/10.1002/mp.16482 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Association of Physicists in Medicine |
publisher.none.fl_str_mv |
American Association of Physicists in Medicine |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613606357860352 |
score |
13.070432 |