Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography

Autores
Thomsen, Felix Sebastian Leo; Iarussi, Emmanuel; Borggrefe, Jan; Boyd, Steven K.; Wang, Yue; Battié, Michele C.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
BackgroundData-driven development of medical biomarkers of bone requires a large amount of image data but physical measurements are generally too restricted in size and quality to perform a robust training.PurposeThis study aims to provide a reliable in silico method for the generation of realistic bone microstructure with defined microarchitectural properties. Synthetic bone samples may improve training of neural networks and serve for the development of new diagnostic parameters of bone architecture and mineralization.MethodsOne hundred-fifty cadaveric lumbar vertebrae from 48 different male human spines were scanned with a high resolution peripheral quantitative CT. After prepocessing the scans, we extracted 10,795 purely spongeous bone patches, each with a side length of 32 voxels (5 mm) and isotropic voxel size of 164 μm. We trained a volumetric generative adversarial network (GAN) in a progressive manner to create synthetic microstructural bone samples. We then added a style transfer technique to allow the generation of synthetic samples with defined microstructure and gestalt by simultaneously optimizing two entangled loss functions. Reliability testing was performed by comparing real and synthetic bone samples on 10 well-understood microstructural parameters.ResultsThe method was able to create synthetic bone samples with visual and quantitative properties that effectively matched with the real samples. The GAN contained a well-formed latent space allowing to smoothly morph bone samples by their microstructural parameters, visual appearance or both. Optimum performance has been obtained for bone samples with voxel size 32 × 32 × 32, but also samples of size 64 × 64 × 64 could be synthesized.ConclusionsOur two-step-approach combines a parameter-agnostic GAN with a parameter-specific style transfer technique. It allows to generate an unlimited anonymous database of microstructural bone samples with sufficient realism to be used for the development of new data-driven methods of bone-biomarkers. Particularly, the style transfer technique can generate datasets of bone samples with specific conditions to simulate certain bone pathologies.
Fil: Thomsen, Felix Sebastian Leo. Ruhr Universität Bochum; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; Argentina
Fil: Iarussi, Emmanuel. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Borggrefe, Jan. Ruhr Universität Bochum; Alemania
Fil: Boyd, Steven K.. University of Calgary; Canadá
Fil: Wang, Yue. Zhejiang University School Of Medicine; China
Fil: Battié, Michele C.. University of Alberta; Canadá
Materia
BONE MICROSTRUCTURE
GESTALT
PROGRESSIVE GENERATIVE ADVERSARIAL NETWORK
STRUCTURAL MORPHING
XTREMECT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/220680

id CONICETDig_6bac0e9bfa314f3f6839c88b1b6e8f0e
oai_identifier_str oai:ri.conicet.gov.ar:11336/220680
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomographyThomsen, Felix Sebastian LeoIarussi, EmmanuelBorggrefe, JanBoyd, Steven K.Wang, YueBattié, Michele C.BONE MICROSTRUCTUREGESTALTPROGRESSIVE GENERATIVE ADVERSARIAL NETWORKSTRUCTURAL MORPHINGXTREMECThttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1BackgroundData-driven development of medical biomarkers of bone requires a large amount of image data but physical measurements are generally too restricted in size and quality to perform a robust training.PurposeThis study aims to provide a reliable in silico method for the generation of realistic bone microstructure with defined microarchitectural properties. Synthetic bone samples may improve training of neural networks and serve for the development of new diagnostic parameters of bone architecture and mineralization.MethodsOne hundred-fifty cadaveric lumbar vertebrae from 48 different male human spines were scanned with a high resolution peripheral quantitative CT. After prepocessing the scans, we extracted 10,795 purely spongeous bone patches, each with a side length of 32 voxels (5 mm) and isotropic voxel size of 164 μm. We trained a volumetric generative adversarial network (GAN) in a progressive manner to create synthetic microstructural bone samples. We then added a style transfer technique to allow the generation of synthetic samples with defined microstructure and gestalt by simultaneously optimizing two entangled loss functions. Reliability testing was performed by comparing real and synthetic bone samples on 10 well-understood microstructural parameters.ResultsThe method was able to create synthetic bone samples with visual and quantitative properties that effectively matched with the real samples. The GAN contained a well-formed latent space allowing to smoothly morph bone samples by their microstructural parameters, visual appearance or both. Optimum performance has been obtained for bone samples with voxel size 32 × 32 × 32, but also samples of size 64 × 64 × 64 could be synthesized.ConclusionsOur two-step-approach combines a parameter-agnostic GAN with a parameter-specific style transfer technique. It allows to generate an unlimited anonymous database of microstructural bone samples with sufficient realism to be used for the development of new data-driven methods of bone-biomarkers. Particularly, the style transfer technique can generate datasets of bone samples with specific conditions to simulate certain bone pathologies.Fil: Thomsen, Felix Sebastian Leo. Ruhr Universität Bochum; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; ArgentinaFil: Iarussi, Emmanuel. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Borggrefe, Jan. Ruhr Universität Bochum; AlemaniaFil: Boyd, Steven K.. University of Calgary; CanadáFil: Wang, Yue. Zhejiang University School Of Medicine; ChinaFil: Battié, Michele C.. University of Alberta; CanadáAmerican Association of Physicists in Medicine2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/220680Thomsen, Felix Sebastian Leo; Iarussi, Emmanuel; Borggrefe, Jan; Boyd, Steven K.; Wang, Yue; et al.; Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography; American Association of Physicists in Medicine; Medical Physics; 50; 11; 6-2023; 6943-69540094-2405CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.16482info:eu-repo/semantics/altIdentifier/doi/10.1002/mp.16482info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:20Zoai:ri.conicet.gov.ar:11336/220680instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:20.973CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography
title Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography
spellingShingle Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography
Thomsen, Felix Sebastian Leo
BONE MICROSTRUCTURE
GESTALT
PROGRESSIVE GENERATIVE ADVERSARIAL NETWORK
STRUCTURAL MORPHING
XTREMECT
title_short Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography
title_full Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography
title_fullStr Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography
title_full_unstemmed Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography
title_sort Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography
dc.creator.none.fl_str_mv Thomsen, Felix Sebastian Leo
Iarussi, Emmanuel
Borggrefe, Jan
Boyd, Steven K.
Wang, Yue
Battié, Michele C.
author Thomsen, Felix Sebastian Leo
author_facet Thomsen, Felix Sebastian Leo
Iarussi, Emmanuel
Borggrefe, Jan
Boyd, Steven K.
Wang, Yue
Battié, Michele C.
author_role author
author2 Iarussi, Emmanuel
Borggrefe, Jan
Boyd, Steven K.
Wang, Yue
Battié, Michele C.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv BONE MICROSTRUCTURE
GESTALT
PROGRESSIVE GENERATIVE ADVERSARIAL NETWORK
STRUCTURAL MORPHING
XTREMECT
topic BONE MICROSTRUCTURE
GESTALT
PROGRESSIVE GENERATIVE ADVERSARIAL NETWORK
STRUCTURAL MORPHING
XTREMECT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv BackgroundData-driven development of medical biomarkers of bone requires a large amount of image data but physical measurements are generally too restricted in size and quality to perform a robust training.PurposeThis study aims to provide a reliable in silico method for the generation of realistic bone microstructure with defined microarchitectural properties. Synthetic bone samples may improve training of neural networks and serve for the development of new diagnostic parameters of bone architecture and mineralization.MethodsOne hundred-fifty cadaveric lumbar vertebrae from 48 different male human spines were scanned with a high resolution peripheral quantitative CT. After prepocessing the scans, we extracted 10,795 purely spongeous bone patches, each with a side length of 32 voxels (5 mm) and isotropic voxel size of 164 μm. We trained a volumetric generative adversarial network (GAN) in a progressive manner to create synthetic microstructural bone samples. We then added a style transfer technique to allow the generation of synthetic samples with defined microstructure and gestalt by simultaneously optimizing two entangled loss functions. Reliability testing was performed by comparing real and synthetic bone samples on 10 well-understood microstructural parameters.ResultsThe method was able to create synthetic bone samples with visual and quantitative properties that effectively matched with the real samples. The GAN contained a well-formed latent space allowing to smoothly morph bone samples by their microstructural parameters, visual appearance or both. Optimum performance has been obtained for bone samples with voxel size 32 × 32 × 32, but also samples of size 64 × 64 × 64 could be synthesized.ConclusionsOur two-step-approach combines a parameter-agnostic GAN with a parameter-specific style transfer technique. It allows to generate an unlimited anonymous database of microstructural bone samples with sufficient realism to be used for the development of new data-driven methods of bone-biomarkers. Particularly, the style transfer technique can generate datasets of bone samples with specific conditions to simulate certain bone pathologies.
Fil: Thomsen, Felix Sebastian Leo. Ruhr Universität Bochum; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; Argentina
Fil: Iarussi, Emmanuel. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Borggrefe, Jan. Ruhr Universität Bochum; Alemania
Fil: Boyd, Steven K.. University of Calgary; Canadá
Fil: Wang, Yue. Zhejiang University School Of Medicine; China
Fil: Battié, Michele C.. University of Alberta; Canadá
description BackgroundData-driven development of medical biomarkers of bone requires a large amount of image data but physical measurements are generally too restricted in size and quality to perform a robust training.PurposeThis study aims to provide a reliable in silico method for the generation of realistic bone microstructure with defined microarchitectural properties. Synthetic bone samples may improve training of neural networks and serve for the development of new diagnostic parameters of bone architecture and mineralization.MethodsOne hundred-fifty cadaveric lumbar vertebrae from 48 different male human spines were scanned with a high resolution peripheral quantitative CT. After prepocessing the scans, we extracted 10,795 purely spongeous bone patches, each with a side length of 32 voxels (5 mm) and isotropic voxel size of 164 μm. We trained a volumetric generative adversarial network (GAN) in a progressive manner to create synthetic microstructural bone samples. We then added a style transfer technique to allow the generation of synthetic samples with defined microstructure and gestalt by simultaneously optimizing two entangled loss functions. Reliability testing was performed by comparing real and synthetic bone samples on 10 well-understood microstructural parameters.ResultsThe method was able to create synthetic bone samples with visual and quantitative properties that effectively matched with the real samples. The GAN contained a well-formed latent space allowing to smoothly morph bone samples by their microstructural parameters, visual appearance or both. Optimum performance has been obtained for bone samples with voxel size 32 × 32 × 32, but also samples of size 64 × 64 × 64 could be synthesized.ConclusionsOur two-step-approach combines a parameter-agnostic GAN with a parameter-specific style transfer technique. It allows to generate an unlimited anonymous database of microstructural bone samples with sufficient realism to be used for the development of new data-driven methods of bone-biomarkers. Particularly, the style transfer technique can generate datasets of bone samples with specific conditions to simulate certain bone pathologies.
publishDate 2023
dc.date.none.fl_str_mv 2023-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/220680
Thomsen, Felix Sebastian Leo; Iarussi, Emmanuel; Borggrefe, Jan; Boyd, Steven K.; Wang, Yue; et al.; Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography; American Association of Physicists in Medicine; Medical Physics; 50; 11; 6-2023; 6943-6954
0094-2405
CONICET Digital
CONICET
url http://hdl.handle.net/11336/220680
identifier_str_mv Thomsen, Felix Sebastian Leo; Iarussi, Emmanuel; Borggrefe, Jan; Boyd, Steven K.; Wang, Yue; et al.; Bone‐GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography; American Association of Physicists in Medicine; Medical Physics; 50; 11; 6-2023; 6943-6954
0094-2405
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.16482
info:eu-repo/semantics/altIdentifier/doi/10.1002/mp.16482
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Association of Physicists in Medicine
publisher.none.fl_str_mv American Association of Physicists in Medicine
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613606357860352
score 13.070432