A variational model of fracture for tearing brittle thin sheets

Autores
Li, Bin; Millán, Raúl Daniel; Torres Sánchez, Alejandro; Roman, Benoît; Arroyo Balaguer, Marino
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Tearing of brittle thin elastic sheets, possibly adhered to a substrate, involves a rich interplay between nonlinear elasticity, geometry, adhesion, and fracture mechanics. In addition to its intrinsic and practical interest, tearing of thin sheets has helped elucidate fundamental aspects of fracture mechanics including the mechanism of crack path selection. A wealth of experimental observations in different experimental setups is available, which has been often rationalized with insightful yet simplified theoretical models based on energetic considerations. In contrast, no computational method has addressed tearing in brittle thin elastic sheets. Here, motivated by the variational nature of simplified models that successfully explain crack paths in tearing sheets, we present a variational phase-field model of fracture coupled to a nonlinear Koiter thin shell model including stretching and bending. We show that this general yet straightforward approach is able to reproduce the observed phenomenology, including spiral or power-law crack paths in free standing films, or converging/diverging cracks in thin films adhered to negatively/positively curved surfaces, a scenario not amenable to simple models. Turning to more quantitative experiments on thin sheets adhered to planar surfaces, our simulations allow us to examine the boundaries of existing theories and suggest that homogeneous damage induced by moving folds is responsible for a systematic discrepancy between theory and experiments. Thus, our computational approach to tearing provides a new tool to understand these complex processes involving fracture, geometric nonlinearity and delamination, complementing experiments and simplified theories.
Fil: Li, Bin. Universidad Politécnica de Catalunya; España. Sorbonne Université; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Millán, Raúl Daniel. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Politécnica de Catalunya; España
Fil: Torres Sánchez, Alejandro. Universidad Politécnica de Catalunya; España
Fil: Roman, Benoît. Centre National de la Recherche Scientifique; Francia. Sorbonne Université; Francia
Fil: Arroyo Balaguer, Marino. Universidad Politécnica de Catalunya; España
Materia
VARIATIONAL MODEL
TEARING
FRACTURE
THIN SHEETS
SUBDIVISION SURFACES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100401

id CONICETDig_6b961d2f555a0a1fa533f989bb50f0d6
oai_identifier_str oai:ri.conicet.gov.ar:11336/100401
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A variational model of fracture for tearing brittle thin sheetsLi, BinMillán, Raúl DanielTorres Sánchez, AlejandroRoman, BenoîtArroyo Balaguer, MarinoVARIATIONAL MODELTEARINGFRACTURETHIN SHEETSSUBDIVISION SURFACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Tearing of brittle thin elastic sheets, possibly adhered to a substrate, involves a rich interplay between nonlinear elasticity, geometry, adhesion, and fracture mechanics. In addition to its intrinsic and practical interest, tearing of thin sheets has helped elucidate fundamental aspects of fracture mechanics including the mechanism of crack path selection. A wealth of experimental observations in different experimental setups is available, which has been often rationalized with insightful yet simplified theoretical models based on energetic considerations. In contrast, no computational method has addressed tearing in brittle thin elastic sheets. Here, motivated by the variational nature of simplified models that successfully explain crack paths in tearing sheets, we present a variational phase-field model of fracture coupled to a nonlinear Koiter thin shell model including stretching and bending. We show that this general yet straightforward approach is able to reproduce the observed phenomenology, including spiral or power-law crack paths in free standing films, or converging/diverging cracks in thin films adhered to negatively/positively curved surfaces, a scenario not amenable to simple models. Turning to more quantitative experiments on thin sheets adhered to planar surfaces, our simulations allow us to examine the boundaries of existing theories and suggest that homogeneous damage induced by moving folds is responsible for a systematic discrepancy between theory and experiments. Thus, our computational approach to tearing provides a new tool to understand these complex processes involving fracture, geometric nonlinearity and delamination, complementing experiments and simplified theories.Fil: Li, Bin. Universidad Politécnica de Catalunya; España. Sorbonne Université; Francia. Centre National de la Recherche Scientifique; FranciaFil: Millán, Raúl Daniel. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Politécnica de Catalunya; EspañaFil: Torres Sánchez, Alejandro. Universidad Politécnica de Catalunya; EspañaFil: Roman, Benoît. Centre National de la Recherche Scientifique; Francia. Sorbonne Université; FranciaFil: Arroyo Balaguer, Marino. Universidad Politécnica de Catalunya; EspañaPergamon-Elsevier Science Ltd2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100401Li, Bin; Millán, Raúl Daniel; Torres Sánchez, Alejandro; Roman, Benoît; Arroyo Balaguer, Marino; A variational model of fracture for tearing brittle thin sheets; Pergamon-Elsevier Science Ltd; Journal of the Mechanics and Physics of Solids; 119; 10-2018; 334-3480022-5096CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0022509618303156info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmps.2018.06.022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:01:00Zoai:ri.conicet.gov.ar:11336/100401instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:01:01.158CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A variational model of fracture for tearing brittle thin sheets
title A variational model of fracture for tearing brittle thin sheets
spellingShingle A variational model of fracture for tearing brittle thin sheets
Li, Bin
VARIATIONAL MODEL
TEARING
FRACTURE
THIN SHEETS
SUBDIVISION SURFACES
title_short A variational model of fracture for tearing brittle thin sheets
title_full A variational model of fracture for tearing brittle thin sheets
title_fullStr A variational model of fracture for tearing brittle thin sheets
title_full_unstemmed A variational model of fracture for tearing brittle thin sheets
title_sort A variational model of fracture for tearing brittle thin sheets
dc.creator.none.fl_str_mv Li, Bin
Millán, Raúl Daniel
Torres Sánchez, Alejandro
Roman, Benoît
Arroyo Balaguer, Marino
author Li, Bin
author_facet Li, Bin
Millán, Raúl Daniel
Torres Sánchez, Alejandro
Roman, Benoît
Arroyo Balaguer, Marino
author_role author
author2 Millán, Raúl Daniel
Torres Sánchez, Alejandro
Roman, Benoît
Arroyo Balaguer, Marino
author2_role author
author
author
author
dc.subject.none.fl_str_mv VARIATIONAL MODEL
TEARING
FRACTURE
THIN SHEETS
SUBDIVISION SURFACES
topic VARIATIONAL MODEL
TEARING
FRACTURE
THIN SHEETS
SUBDIVISION SURFACES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Tearing of brittle thin elastic sheets, possibly adhered to a substrate, involves a rich interplay between nonlinear elasticity, geometry, adhesion, and fracture mechanics. In addition to its intrinsic and practical interest, tearing of thin sheets has helped elucidate fundamental aspects of fracture mechanics including the mechanism of crack path selection. A wealth of experimental observations in different experimental setups is available, which has been often rationalized with insightful yet simplified theoretical models based on energetic considerations. In contrast, no computational method has addressed tearing in brittle thin elastic sheets. Here, motivated by the variational nature of simplified models that successfully explain crack paths in tearing sheets, we present a variational phase-field model of fracture coupled to a nonlinear Koiter thin shell model including stretching and bending. We show that this general yet straightforward approach is able to reproduce the observed phenomenology, including spiral or power-law crack paths in free standing films, or converging/diverging cracks in thin films adhered to negatively/positively curved surfaces, a scenario not amenable to simple models. Turning to more quantitative experiments on thin sheets adhered to planar surfaces, our simulations allow us to examine the boundaries of existing theories and suggest that homogeneous damage induced by moving folds is responsible for a systematic discrepancy between theory and experiments. Thus, our computational approach to tearing provides a new tool to understand these complex processes involving fracture, geometric nonlinearity and delamination, complementing experiments and simplified theories.
Fil: Li, Bin. Universidad Politécnica de Catalunya; España. Sorbonne Université; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Millán, Raúl Daniel. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Politécnica de Catalunya; España
Fil: Torres Sánchez, Alejandro. Universidad Politécnica de Catalunya; España
Fil: Roman, Benoît. Centre National de la Recherche Scientifique; Francia. Sorbonne Université; Francia
Fil: Arroyo Balaguer, Marino. Universidad Politécnica de Catalunya; España
description Tearing of brittle thin elastic sheets, possibly adhered to a substrate, involves a rich interplay between nonlinear elasticity, geometry, adhesion, and fracture mechanics. In addition to its intrinsic and practical interest, tearing of thin sheets has helped elucidate fundamental aspects of fracture mechanics including the mechanism of crack path selection. A wealth of experimental observations in different experimental setups is available, which has been often rationalized with insightful yet simplified theoretical models based on energetic considerations. In contrast, no computational method has addressed tearing in brittle thin elastic sheets. Here, motivated by the variational nature of simplified models that successfully explain crack paths in tearing sheets, we present a variational phase-field model of fracture coupled to a nonlinear Koiter thin shell model including stretching and bending. We show that this general yet straightforward approach is able to reproduce the observed phenomenology, including spiral or power-law crack paths in free standing films, or converging/diverging cracks in thin films adhered to negatively/positively curved surfaces, a scenario not amenable to simple models. Turning to more quantitative experiments on thin sheets adhered to planar surfaces, our simulations allow us to examine the boundaries of existing theories and suggest that homogeneous damage induced by moving folds is responsible for a systematic discrepancy between theory and experiments. Thus, our computational approach to tearing provides a new tool to understand these complex processes involving fracture, geometric nonlinearity and delamination, complementing experiments and simplified theories.
publishDate 2018
dc.date.none.fl_str_mv 2018-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100401
Li, Bin; Millán, Raúl Daniel; Torres Sánchez, Alejandro; Roman, Benoît; Arroyo Balaguer, Marino; A variational model of fracture for tearing brittle thin sheets; Pergamon-Elsevier Science Ltd; Journal of the Mechanics and Physics of Solids; 119; 10-2018; 334-348
0022-5096
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100401
identifier_str_mv Li, Bin; Millán, Raúl Daniel; Torres Sánchez, Alejandro; Roman, Benoît; Arroyo Balaguer, Marino; A variational model of fracture for tearing brittle thin sheets; Pergamon-Elsevier Science Ltd; Journal of the Mechanics and Physics of Solids; 119; 10-2018; 334-348
0022-5096
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0022509618303156
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmps.2018.06.022
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781184773718016
score 12.982451