Compositional variation in grassland plant communities
- Autores
- Bakker, Jonathan; Price, Jodi N.; Henning, Jeremiah A.; Batzer, Evan E.; Ohlert, Timothy; Wainwright, Claire E.; Adler, Peter; Alberti, Juan; Arnillas, Carlos Alberto; Biederman, Lori A.; Borer, Elizabeth; Brudvig, Lars A.; Buckley, Yvonne M.; Bugalho, Miguel N.; Cadotte, Marc W.; Caldeira, Maria C.; Catford, Jane A.; Qingqing, Chen; Crawley, Michael J.; Daleo, Pedro; Dickman, Chris R.; Donohue, Ian; DuPre, Mary Ellyn; Eisenhauer, Nico; Peri, Pablo Luis; Roscher, Christiane; Tedder, Michelle; Veen, G. F.; Virtanen, Risto; Wardle, Glenda M.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Human activities are altering ecological communities around the globe. Understanding the implications of these changes requires that we consider the composition of those communities. However, composition can be summarized by many metrics which in turn are influenced by different ecological processes. For example, incidence-based metrics strongly reflect species gains or losses, while abundance-based metrics are minimally affected by changes in the abundance of small or uncommon species. Furthermore, metrics might be correlated with different predictors. We used a globally distributed experiment to examine variation in species composition within 60 grasslands on six continents. Each site had an identical experimental and sampling design: 24 plots × 4 years. We expressed compositional variation within each site—not across sites—using abundance- and incidence-based metrics of the magnitude of dissimilarity (Bray–Curtis and Sorensen, respectively), abundance- and incidence-based measures of the relative importance of replacement (balanced variation and species turnover, respectively), and species richness at two scales (per plot-year [alpha] and per site [gamma]). Average compositional variation among all plot-years at a site was high and similar to spatial variation among plots in the pretreatment year, but lower among years in untreated plots. For both types of metrics, most variation was due to replacement rather than nestedness. Differences among sites in overall within-site compositional variation were related to several predictors. Environmental heterogeneity (expressed as the CV of total aboveground plant biomass in unfertilized plots of the site) was an important predictor for most metrics. Biomass production was a predictor of species turnover and of alpha diversity but not of other metrics. Continentality (measured as annual temperature range) was a strong predictor of Sorensen dissimilarity. Metrics of compositional variation are moderately correlated: knowing the magnitude of dissimilarity at a site provides little insight into whether the variation is driven by replacement processes. Overall, our understanding of compositional variation at a site is enhanced by considering multiple metrics simultaneously. Monitoring programs that explicitly incorporate these implications, both when designing sampling strategies and analyzing data, will have a stronger ability to understand the compositional variation of systems and to quantify the impacts of human activities.
Fil: Bakker, Jonathan. University of Washington; Estados Unidos
Fil: Price, Jodi N.. Charles Sturt University; Australia
Fil: Henning, Jeremiah A.. University of Minnesota; Estados Unidos. University of South Alabama; Estados Unidos
Fil: Batzer, Evan E.. University of California at Davis; Estados Unidos
Fil: Ohlert, Timothy. University of New Mexico; Estados Unidos
Fil: Wainwright, Claire E.. University of Washington; Estados Unidos
Fil: Adler, Peter. State University of Utah; Estados Unidos
Fil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
Fil: Arnillas, Carlos Alberto. University of Toronto; Canadá
Fil: Biederman, Lori A.. Iowa State University; Estados Unidos
Fil: Borer, Elizabeth. University of Minnesota; Estados Unidos
Fil: Brudvig, Lars A.. Michigan State University; Estados Unidos
Fil: Buckley, Yvonne M.. Trinity College Dublin; Irlanda
Fil: Bugalho, Miguel N.. Universidade de Lisboa; Portugal
Fil: Cadotte, Marc W.. University of Toronto; Canadá
Fil: Caldeira, Maria C.. Universidade de Lisboa; Portugal
Fil: Catford, Jane A.. Kings College London (kcl);
Fil: Qingqing, Chen. Peking University; China
Fil: Crawley, Michael J.. Imperial College. London Institute Of Medical Sciences.;
Fil: Daleo, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
Fil: Dickman, Chris R.. University of Sydney; Australia
Fil: Donohue, Ian. Trinity College Dublin; Irlanda
Fil: DuPre, Mary Ellyn. Mpg Ranch; Estados Unidos
Fil: Eisenhauer, Nico. German Centre For Integrative Biodiversity Research; Alemania. Universitat Leipzig; Alemania
Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria; Argentina
Fil: Roscher, Christiane. German Centre For Integrative Biodiversity Research; Alemania
Fil: Tedder, Michelle. University Of Kwazulu-natal; Sudáfrica
Fil: Veen, G. F.. Netherlands Institute Of Ecology; Países Bajos
Fil: Virtanen, Risto. University Of Oulu; Finlandia
Fil: Wardle, Glenda M.. The University Of Sydney; Australia - Materia
-
BRAY–CURTIS DISSIMILARITY
FERTILIZATION
SPECIES COMPOSITION
GRASSLAND - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/220496
Ver los metadatos del registro completo
id |
CONICETDig_6b5e20cb4c5cb63d98d4c81168341ec5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/220496 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Compositional variation in grassland plant communitiesBakker, JonathanPrice, Jodi N.Henning, Jeremiah A.Batzer, Evan E.Ohlert, TimothyWainwright, Claire E.Adler, PeterAlberti, JuanArnillas, Carlos AlbertoBiederman, Lori A.Borer, ElizabethBrudvig, Lars A.Buckley, Yvonne M.Bugalho, Miguel N.Cadotte, Marc W.Caldeira, Maria C.Catford, Jane A.Qingqing, ChenCrawley, Michael J.Daleo, PedroDickman, Chris R.Donohue, IanDuPre, Mary EllynEisenhauer, NicoPeri, Pablo LuisRoscher, ChristianeTedder, MichelleVeen, G. F.Virtanen, RistoWardle, Glenda M.BRAY–CURTIS DISSIMILARITYFERTILIZATIONSPECIES COMPOSITIONGRASSLANDhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Human activities are altering ecological communities around the globe. Understanding the implications of these changes requires that we consider the composition of those communities. However, composition can be summarized by many metrics which in turn are influenced by different ecological processes. For example, incidence-based metrics strongly reflect species gains or losses, while abundance-based metrics are minimally affected by changes in the abundance of small or uncommon species. Furthermore, metrics might be correlated with different predictors. We used a globally distributed experiment to examine variation in species composition within 60 grasslands on six continents. Each site had an identical experimental and sampling design: 24 plots × 4 years. We expressed compositional variation within each site—not across sites—using abundance- and incidence-based metrics of the magnitude of dissimilarity (Bray–Curtis and Sorensen, respectively), abundance- and incidence-based measures of the relative importance of replacement (balanced variation and species turnover, respectively), and species richness at two scales (per plot-year [alpha] and per site [gamma]). Average compositional variation among all plot-years at a site was high and similar to spatial variation among plots in the pretreatment year, but lower among years in untreated plots. For both types of metrics, most variation was due to replacement rather than nestedness. Differences among sites in overall within-site compositional variation were related to several predictors. Environmental heterogeneity (expressed as the CV of total aboveground plant biomass in unfertilized plots of the site) was an important predictor for most metrics. Biomass production was a predictor of species turnover and of alpha diversity but not of other metrics. Continentality (measured as annual temperature range) was a strong predictor of Sorensen dissimilarity. Metrics of compositional variation are moderately correlated: knowing the magnitude of dissimilarity at a site provides little insight into whether the variation is driven by replacement processes. Overall, our understanding of compositional variation at a site is enhanced by considering multiple metrics simultaneously. Monitoring programs that explicitly incorporate these implications, both when designing sampling strategies and analyzing data, will have a stronger ability to understand the compositional variation of systems and to quantify the impacts of human activities.Fil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Price, Jodi N.. Charles Sturt University; AustraliaFil: Henning, Jeremiah A.. University of Minnesota; Estados Unidos. University of South Alabama; Estados UnidosFil: Batzer, Evan E.. University of California at Davis; Estados UnidosFil: Ohlert, Timothy. University of New Mexico; Estados UnidosFil: Wainwright, Claire E.. University of Washington; Estados UnidosFil: Adler, Peter. State University of Utah; Estados UnidosFil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Arnillas, Carlos Alberto. University of Toronto; CanadáFil: Biederman, Lori A.. Iowa State University; Estados UnidosFil: Borer, Elizabeth. University of Minnesota; Estados UnidosFil: Brudvig, Lars A.. Michigan State University; Estados UnidosFil: Buckley, Yvonne M.. Trinity College Dublin; IrlandaFil: Bugalho, Miguel N.. Universidade de Lisboa; PortugalFil: Cadotte, Marc W.. University of Toronto; CanadáFil: Caldeira, Maria C.. Universidade de Lisboa; PortugalFil: Catford, Jane A.. Kings College London (kcl);Fil: Qingqing, Chen. Peking University; ChinaFil: Crawley, Michael J.. Imperial College. London Institute Of Medical Sciences.;Fil: Daleo, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Dickman, Chris R.. University of Sydney; AustraliaFil: Donohue, Ian. Trinity College Dublin; IrlandaFil: DuPre, Mary Ellyn. Mpg Ranch; Estados UnidosFil: Eisenhauer, Nico. German Centre For Integrative Biodiversity Research; Alemania. Universitat Leipzig; AlemaniaFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Roscher, Christiane. German Centre For Integrative Biodiversity Research; AlemaniaFil: Tedder, Michelle. University Of Kwazulu-natal; SudáfricaFil: Veen, G. F.. Netherlands Institute Of Ecology; Países BajosFil: Virtanen, Risto. University Of Oulu; FinlandiaFil: Wardle, Glenda M.. The University Of Sydney; AustraliaWiley2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/220496Bakker, Jonathan; Price, Jodi N.; Henning, Jeremiah A.; Batzer, Evan E.; Ohlert, Timothy; et al.; Compositional variation in grassland plant communities; Wiley; Ecosphere; 14; e454; 6-2023; 1-172150-8925CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecs2.4542info:eu-repo/semantics/altIdentifier/doi/10.1002/ecs2.4542info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:20Zoai:ri.conicet.gov.ar:11336/220496instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:21.079CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Compositional variation in grassland plant communities |
title |
Compositional variation in grassland plant communities |
spellingShingle |
Compositional variation in grassland plant communities Bakker, Jonathan BRAY–CURTIS DISSIMILARITY FERTILIZATION SPECIES COMPOSITION GRASSLAND |
title_short |
Compositional variation in grassland plant communities |
title_full |
Compositional variation in grassland plant communities |
title_fullStr |
Compositional variation in grassland plant communities |
title_full_unstemmed |
Compositional variation in grassland plant communities |
title_sort |
Compositional variation in grassland plant communities |
dc.creator.none.fl_str_mv |
Bakker, Jonathan Price, Jodi N. Henning, Jeremiah A. Batzer, Evan E. Ohlert, Timothy Wainwright, Claire E. Adler, Peter Alberti, Juan Arnillas, Carlos Alberto Biederman, Lori A. Borer, Elizabeth Brudvig, Lars A. Buckley, Yvonne M. Bugalho, Miguel N. Cadotte, Marc W. Caldeira, Maria C. Catford, Jane A. Qingqing, Chen Crawley, Michael J. Daleo, Pedro Dickman, Chris R. Donohue, Ian DuPre, Mary Ellyn Eisenhauer, Nico Peri, Pablo Luis Roscher, Christiane Tedder, Michelle Veen, G. F. Virtanen, Risto Wardle, Glenda M. |
author |
Bakker, Jonathan |
author_facet |
Bakker, Jonathan Price, Jodi N. Henning, Jeremiah A. Batzer, Evan E. Ohlert, Timothy Wainwright, Claire E. Adler, Peter Alberti, Juan Arnillas, Carlos Alberto Biederman, Lori A. Borer, Elizabeth Brudvig, Lars A. Buckley, Yvonne M. Bugalho, Miguel N. Cadotte, Marc W. Caldeira, Maria C. Catford, Jane A. Qingqing, Chen Crawley, Michael J. Daleo, Pedro Dickman, Chris R. Donohue, Ian DuPre, Mary Ellyn Eisenhauer, Nico Peri, Pablo Luis Roscher, Christiane Tedder, Michelle Veen, G. F. Virtanen, Risto Wardle, Glenda M. |
author_role |
author |
author2 |
Price, Jodi N. Henning, Jeremiah A. Batzer, Evan E. Ohlert, Timothy Wainwright, Claire E. Adler, Peter Alberti, Juan Arnillas, Carlos Alberto Biederman, Lori A. Borer, Elizabeth Brudvig, Lars A. Buckley, Yvonne M. Bugalho, Miguel N. Cadotte, Marc W. Caldeira, Maria C. Catford, Jane A. Qingqing, Chen Crawley, Michael J. Daleo, Pedro Dickman, Chris R. Donohue, Ian DuPre, Mary Ellyn Eisenhauer, Nico Peri, Pablo Luis Roscher, Christiane Tedder, Michelle Veen, G. F. Virtanen, Risto Wardle, Glenda M. |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
BRAY–CURTIS DISSIMILARITY FERTILIZATION SPECIES COMPOSITION GRASSLAND |
topic |
BRAY–CURTIS DISSIMILARITY FERTILIZATION SPECIES COMPOSITION GRASSLAND |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Human activities are altering ecological communities around the globe. Understanding the implications of these changes requires that we consider the composition of those communities. However, composition can be summarized by many metrics which in turn are influenced by different ecological processes. For example, incidence-based metrics strongly reflect species gains or losses, while abundance-based metrics are minimally affected by changes in the abundance of small or uncommon species. Furthermore, metrics might be correlated with different predictors. We used a globally distributed experiment to examine variation in species composition within 60 grasslands on six continents. Each site had an identical experimental and sampling design: 24 plots × 4 years. We expressed compositional variation within each site—not across sites—using abundance- and incidence-based metrics of the magnitude of dissimilarity (Bray–Curtis and Sorensen, respectively), abundance- and incidence-based measures of the relative importance of replacement (balanced variation and species turnover, respectively), and species richness at two scales (per plot-year [alpha] and per site [gamma]). Average compositional variation among all plot-years at a site was high and similar to spatial variation among plots in the pretreatment year, but lower among years in untreated plots. For both types of metrics, most variation was due to replacement rather than nestedness. Differences among sites in overall within-site compositional variation were related to several predictors. Environmental heterogeneity (expressed as the CV of total aboveground plant biomass in unfertilized plots of the site) was an important predictor for most metrics. Biomass production was a predictor of species turnover and of alpha diversity but not of other metrics. Continentality (measured as annual temperature range) was a strong predictor of Sorensen dissimilarity. Metrics of compositional variation are moderately correlated: knowing the magnitude of dissimilarity at a site provides little insight into whether the variation is driven by replacement processes. Overall, our understanding of compositional variation at a site is enhanced by considering multiple metrics simultaneously. Monitoring programs that explicitly incorporate these implications, both when designing sampling strategies and analyzing data, will have a stronger ability to understand the compositional variation of systems and to quantify the impacts of human activities. Fil: Bakker, Jonathan. University of Washington; Estados Unidos Fil: Price, Jodi N.. Charles Sturt University; Australia Fil: Henning, Jeremiah A.. University of Minnesota; Estados Unidos. University of South Alabama; Estados Unidos Fil: Batzer, Evan E.. University of California at Davis; Estados Unidos Fil: Ohlert, Timothy. University of New Mexico; Estados Unidos Fil: Wainwright, Claire E.. University of Washington; Estados Unidos Fil: Adler, Peter. State University of Utah; Estados Unidos Fil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina Fil: Arnillas, Carlos Alberto. University of Toronto; Canadá Fil: Biederman, Lori A.. Iowa State University; Estados Unidos Fil: Borer, Elizabeth. University of Minnesota; Estados Unidos Fil: Brudvig, Lars A.. Michigan State University; Estados Unidos Fil: Buckley, Yvonne M.. Trinity College Dublin; Irlanda Fil: Bugalho, Miguel N.. Universidade de Lisboa; Portugal Fil: Cadotte, Marc W.. University of Toronto; Canadá Fil: Caldeira, Maria C.. Universidade de Lisboa; Portugal Fil: Catford, Jane A.. Kings College London (kcl); Fil: Qingqing, Chen. Peking University; China Fil: Crawley, Michael J.. Imperial College. London Institute Of Medical Sciences.; Fil: Daleo, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina Fil: Dickman, Chris R.. University of Sydney; Australia Fil: Donohue, Ian. Trinity College Dublin; Irlanda Fil: DuPre, Mary Ellyn. Mpg Ranch; Estados Unidos Fil: Eisenhauer, Nico. German Centre For Integrative Biodiversity Research; Alemania. Universitat Leipzig; Alemania Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria; Argentina Fil: Roscher, Christiane. German Centre For Integrative Biodiversity Research; Alemania Fil: Tedder, Michelle. University Of Kwazulu-natal; Sudáfrica Fil: Veen, G. F.. Netherlands Institute Of Ecology; Países Bajos Fil: Virtanen, Risto. University Of Oulu; Finlandia Fil: Wardle, Glenda M.. The University Of Sydney; Australia |
description |
Human activities are altering ecological communities around the globe. Understanding the implications of these changes requires that we consider the composition of those communities. However, composition can be summarized by many metrics which in turn are influenced by different ecological processes. For example, incidence-based metrics strongly reflect species gains or losses, while abundance-based metrics are minimally affected by changes in the abundance of small or uncommon species. Furthermore, metrics might be correlated with different predictors. We used a globally distributed experiment to examine variation in species composition within 60 grasslands on six continents. Each site had an identical experimental and sampling design: 24 plots × 4 years. We expressed compositional variation within each site—not across sites—using abundance- and incidence-based metrics of the magnitude of dissimilarity (Bray–Curtis and Sorensen, respectively), abundance- and incidence-based measures of the relative importance of replacement (balanced variation and species turnover, respectively), and species richness at two scales (per plot-year [alpha] and per site [gamma]). Average compositional variation among all plot-years at a site was high and similar to spatial variation among plots in the pretreatment year, but lower among years in untreated plots. For both types of metrics, most variation was due to replacement rather than nestedness. Differences among sites in overall within-site compositional variation were related to several predictors. Environmental heterogeneity (expressed as the CV of total aboveground plant biomass in unfertilized plots of the site) was an important predictor for most metrics. Biomass production was a predictor of species turnover and of alpha diversity but not of other metrics. Continentality (measured as annual temperature range) was a strong predictor of Sorensen dissimilarity. Metrics of compositional variation are moderately correlated: knowing the magnitude of dissimilarity at a site provides little insight into whether the variation is driven by replacement processes. Overall, our understanding of compositional variation at a site is enhanced by considering multiple metrics simultaneously. Monitoring programs that explicitly incorporate these implications, both when designing sampling strategies and analyzing data, will have a stronger ability to understand the compositional variation of systems and to quantify the impacts of human activities. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/220496 Bakker, Jonathan; Price, Jodi N.; Henning, Jeremiah A.; Batzer, Evan E.; Ohlert, Timothy; et al.; Compositional variation in grassland plant communities; Wiley; Ecosphere; 14; e454; 6-2023; 1-17 2150-8925 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/220496 |
identifier_str_mv |
Bakker, Jonathan; Price, Jodi N.; Henning, Jeremiah A.; Batzer, Evan E.; Ohlert, Timothy; et al.; Compositional variation in grassland plant communities; Wiley; Ecosphere; 14; e454; 6-2023; 1-17 2150-8925 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecs2.4542 info:eu-repo/semantics/altIdentifier/doi/10.1002/ecs2.4542 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613139131269120 |
score |
13.070432 |