Compositional variation in grassland plant communities

Autores
Bakker, Jonathan; Price, Jodi N.; Henning, Jeremiah A.; Batzer, Evan E.; Ohlert, Timothy; Wainwright, Claire E.; Adler, Peter; Alberti, Juan; Arnillas, Carlos Alberto; Biederman, Lori A.; Borer, Elizabeth; Brudvig, Lars A.; Buckley, Yvonne M.; Bugalho, Miguel N.; Cadotte, Marc W.; Caldeira, Maria C.; Catford, Jane A.; Qingqing, Chen; Crawley, Michael J.; Daleo, Pedro; Dickman, Chris R.; Donohue, Ian; DuPre, Mary Ellyn; Eisenhauer, Nico; Peri, Pablo Luis; Roscher, Christiane; Tedder, Michelle; Veen, G. F.; Virtanen, Risto; Wardle, Glenda M.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Human activities are altering ecological communities around the globe. Understanding the implications of these changes requires that we consider the composition of those communities. However, composition can be summarized by many metrics which in turn are influenced by different ecological processes. For example, incidence-based metrics strongly reflect species gains or losses, while abundance-based metrics are minimally affected by changes in the abundance of small or uncommon species. Furthermore, metrics might be correlated with different predictors. We used a globally distributed experiment to examine variation in species composition within 60 grasslands on six continents. Each site had an identical experimental and sampling design: 24 plots × 4 years. We expressed compositional variation within each site—not across sites—using abundance- and incidence-based metrics of the magnitude of dissimilarity (Bray–Curtis and Sorensen, respectively), abundance- and incidence-based measures of the relative importance of replacement (balanced variation and species turnover, respectively), and species richness at two scales (per plot-year [alpha] and per site [gamma]). Average compositional variation among all plot-years at a site was high and similar to spatial variation among plots in the pretreatment year, but lower among years in untreated plots. For both types of metrics, most variation was due to replacement rather than nestedness. Differences among sites in overall within-site compositional variation were related to several predictors. Environmental heterogeneity (expressed as the CV of total aboveground plant biomass in unfertilized plots of the site) was an important predictor for most metrics. Biomass production was a predictor of species turnover and of alpha diversity but not of other metrics. Continentality (measured as annual temperature range) was a strong predictor of Sorensen dissimilarity. Metrics of compositional variation are moderately correlated: knowing the magnitude of dissimilarity at a site provides little insight into whether the variation is driven by replacement processes. Overall, our understanding of compositional variation at a site is enhanced by considering multiple metrics simultaneously. Monitoring programs that explicitly incorporate these implications, both when designing sampling strategies and analyzing data, will have a stronger ability to understand the compositional variation of systems and to quantify the impacts of human activities.
Fil: Bakker, Jonathan. University of Washington; Estados Unidos
Fil: Price, Jodi N.. Charles Sturt University; Australia
Fil: Henning, Jeremiah A.. University of Minnesota; Estados Unidos. University of South Alabama; Estados Unidos
Fil: Batzer, Evan E.. University of California at Davis; Estados Unidos
Fil: Ohlert, Timothy. University of New Mexico; Estados Unidos
Fil: Wainwright, Claire E.. University of Washington; Estados Unidos
Fil: Adler, Peter. State University of Utah; Estados Unidos
Fil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
Fil: Arnillas, Carlos Alberto. University of Toronto; Canadá
Fil: Biederman, Lori A.. Iowa State University; Estados Unidos
Fil: Borer, Elizabeth. University of Minnesota; Estados Unidos
Fil: Brudvig, Lars A.. Michigan State University; Estados Unidos
Fil: Buckley, Yvonne M.. Trinity College Dublin; Irlanda
Fil: Bugalho, Miguel N.. Universidade de Lisboa; Portugal
Fil: Cadotte, Marc W.. University of Toronto; Canadá
Fil: Caldeira, Maria C.. Universidade de Lisboa; Portugal
Fil: Catford, Jane A.. Kings College London (kcl);
Fil: Qingqing, Chen. Peking University; China
Fil: Crawley, Michael J.. Imperial College. London Institute Of Medical Sciences.;
Fil: Daleo, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
Fil: Dickman, Chris R.. University of Sydney; Australia
Fil: Donohue, Ian. Trinity College Dublin; Irlanda
Fil: DuPre, Mary Ellyn. Mpg Ranch; Estados Unidos
Fil: Eisenhauer, Nico. German Centre For Integrative Biodiversity Research; Alemania. Universitat Leipzig; Alemania
Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria; Argentina
Fil: Roscher, Christiane. German Centre For Integrative Biodiversity Research; Alemania
Fil: Tedder, Michelle. University Of Kwazulu-natal; Sudáfrica
Fil: Veen, G. F.. Netherlands Institute Of Ecology; Países Bajos
Fil: Virtanen, Risto. University Of Oulu; Finlandia
Fil: Wardle, Glenda M.. The University Of Sydney; Australia
Materia
BRAY–CURTIS DISSIMILARITY
FERTILIZATION
SPECIES COMPOSITION
GRASSLAND
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/220496

id CONICETDig_6b5e20cb4c5cb63d98d4c81168341ec5
oai_identifier_str oai:ri.conicet.gov.ar:11336/220496
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Compositional variation in grassland plant communitiesBakker, JonathanPrice, Jodi N.Henning, Jeremiah A.Batzer, Evan E.Ohlert, TimothyWainwright, Claire E.Adler, PeterAlberti, JuanArnillas, Carlos AlbertoBiederman, Lori A.Borer, ElizabethBrudvig, Lars A.Buckley, Yvonne M.Bugalho, Miguel N.Cadotte, Marc W.Caldeira, Maria C.Catford, Jane A.Qingqing, ChenCrawley, Michael J.Daleo, PedroDickman, Chris R.Donohue, IanDuPre, Mary EllynEisenhauer, NicoPeri, Pablo LuisRoscher, ChristianeTedder, MichelleVeen, G. F.Virtanen, RistoWardle, Glenda M.BRAY–CURTIS DISSIMILARITYFERTILIZATIONSPECIES COMPOSITIONGRASSLANDhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Human activities are altering ecological communities around the globe. Understanding the implications of these changes requires that we consider the composition of those communities. However, composition can be summarized by many metrics which in turn are influenced by different ecological processes. For example, incidence-based metrics strongly reflect species gains or losses, while abundance-based metrics are minimally affected by changes in the abundance of small or uncommon species. Furthermore, metrics might be correlated with different predictors. We used a globally distributed experiment to examine variation in species composition within 60 grasslands on six continents. Each site had an identical experimental and sampling design: 24 plots × 4 years. We expressed compositional variation within each site—not across sites—using abundance- and incidence-based metrics of the magnitude of dissimilarity (Bray–Curtis and Sorensen, respectively), abundance- and incidence-based measures of the relative importance of replacement (balanced variation and species turnover, respectively), and species richness at two scales (per plot-year [alpha] and per site [gamma]). Average compositional variation among all plot-years at a site was high and similar to spatial variation among plots in the pretreatment year, but lower among years in untreated plots. For both types of metrics, most variation was due to replacement rather than nestedness. Differences among sites in overall within-site compositional variation were related to several predictors. Environmental heterogeneity (expressed as the CV of total aboveground plant biomass in unfertilized plots of the site) was an important predictor for most metrics. Biomass production was a predictor of species turnover and of alpha diversity but not of other metrics. Continentality (measured as annual temperature range) was a strong predictor of Sorensen dissimilarity. Metrics of compositional variation are moderately correlated: knowing the magnitude of dissimilarity at a site provides little insight into whether the variation is driven by replacement processes. Overall, our understanding of compositional variation at a site is enhanced by considering multiple metrics simultaneously. Monitoring programs that explicitly incorporate these implications, both when designing sampling strategies and analyzing data, will have a stronger ability to understand the compositional variation of systems and to quantify the impacts of human activities.Fil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Price, Jodi N.. Charles Sturt University; AustraliaFil: Henning, Jeremiah A.. University of Minnesota; Estados Unidos. University of South Alabama; Estados UnidosFil: Batzer, Evan E.. University of California at Davis; Estados UnidosFil: Ohlert, Timothy. University of New Mexico; Estados UnidosFil: Wainwright, Claire E.. University of Washington; Estados UnidosFil: Adler, Peter. State University of Utah; Estados UnidosFil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Arnillas, Carlos Alberto. University of Toronto; CanadáFil: Biederman, Lori A.. Iowa State University; Estados UnidosFil: Borer, Elizabeth. University of Minnesota; Estados UnidosFil: Brudvig, Lars A.. Michigan State University; Estados UnidosFil: Buckley, Yvonne M.. Trinity College Dublin; IrlandaFil: Bugalho, Miguel N.. Universidade de Lisboa; PortugalFil: Cadotte, Marc W.. University of Toronto; CanadáFil: Caldeira, Maria C.. Universidade de Lisboa; PortugalFil: Catford, Jane A.. Kings College London (kcl);Fil: Qingqing, Chen. Peking University; ChinaFil: Crawley, Michael J.. Imperial College. London Institute Of Medical Sciences.;Fil: Daleo, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Dickman, Chris R.. University of Sydney; AustraliaFil: Donohue, Ian. Trinity College Dublin; IrlandaFil: DuPre, Mary Ellyn. Mpg Ranch; Estados UnidosFil: Eisenhauer, Nico. German Centre For Integrative Biodiversity Research; Alemania. Universitat Leipzig; AlemaniaFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Roscher, Christiane. German Centre For Integrative Biodiversity Research; AlemaniaFil: Tedder, Michelle. University Of Kwazulu-natal; SudáfricaFil: Veen, G. F.. Netherlands Institute Of Ecology; Países BajosFil: Virtanen, Risto. University Of Oulu; FinlandiaFil: Wardle, Glenda M.. The University Of Sydney; AustraliaWiley2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/220496Bakker, Jonathan; Price, Jodi N.; Henning, Jeremiah A.; Batzer, Evan E.; Ohlert, Timothy; et al.; Compositional variation in grassland plant communities; Wiley; Ecosphere; 14; e454; 6-2023; 1-172150-8925CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecs2.4542info:eu-repo/semantics/altIdentifier/doi/10.1002/ecs2.4542info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:20Zoai:ri.conicet.gov.ar:11336/220496instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:21.079CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Compositional variation in grassland plant communities
title Compositional variation in grassland plant communities
spellingShingle Compositional variation in grassland plant communities
Bakker, Jonathan
BRAY–CURTIS DISSIMILARITY
FERTILIZATION
SPECIES COMPOSITION
GRASSLAND
title_short Compositional variation in grassland plant communities
title_full Compositional variation in grassland plant communities
title_fullStr Compositional variation in grassland plant communities
title_full_unstemmed Compositional variation in grassland plant communities
title_sort Compositional variation in grassland plant communities
dc.creator.none.fl_str_mv Bakker, Jonathan
Price, Jodi N.
Henning, Jeremiah A.
Batzer, Evan E.
Ohlert, Timothy
Wainwright, Claire E.
Adler, Peter
Alberti, Juan
Arnillas, Carlos Alberto
Biederman, Lori A.
Borer, Elizabeth
Brudvig, Lars A.
Buckley, Yvonne M.
Bugalho, Miguel N.
Cadotte, Marc W.
Caldeira, Maria C.
Catford, Jane A.
Qingqing, Chen
Crawley, Michael J.
Daleo, Pedro
Dickman, Chris R.
Donohue, Ian
DuPre, Mary Ellyn
Eisenhauer, Nico
Peri, Pablo Luis
Roscher, Christiane
Tedder, Michelle
Veen, G. F.
Virtanen, Risto
Wardle, Glenda M.
author Bakker, Jonathan
author_facet Bakker, Jonathan
Price, Jodi N.
Henning, Jeremiah A.
Batzer, Evan E.
Ohlert, Timothy
Wainwright, Claire E.
Adler, Peter
Alberti, Juan
Arnillas, Carlos Alberto
Biederman, Lori A.
Borer, Elizabeth
Brudvig, Lars A.
Buckley, Yvonne M.
Bugalho, Miguel N.
Cadotte, Marc W.
Caldeira, Maria C.
Catford, Jane A.
Qingqing, Chen
Crawley, Michael J.
Daleo, Pedro
Dickman, Chris R.
Donohue, Ian
DuPre, Mary Ellyn
Eisenhauer, Nico
Peri, Pablo Luis
Roscher, Christiane
Tedder, Michelle
Veen, G. F.
Virtanen, Risto
Wardle, Glenda M.
author_role author
author2 Price, Jodi N.
Henning, Jeremiah A.
Batzer, Evan E.
Ohlert, Timothy
Wainwright, Claire E.
Adler, Peter
Alberti, Juan
Arnillas, Carlos Alberto
Biederman, Lori A.
Borer, Elizabeth
Brudvig, Lars A.
Buckley, Yvonne M.
Bugalho, Miguel N.
Cadotte, Marc W.
Caldeira, Maria C.
Catford, Jane A.
Qingqing, Chen
Crawley, Michael J.
Daleo, Pedro
Dickman, Chris R.
Donohue, Ian
DuPre, Mary Ellyn
Eisenhauer, Nico
Peri, Pablo Luis
Roscher, Christiane
Tedder, Michelle
Veen, G. F.
Virtanen, Risto
Wardle, Glenda M.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv BRAY–CURTIS DISSIMILARITY
FERTILIZATION
SPECIES COMPOSITION
GRASSLAND
topic BRAY–CURTIS DISSIMILARITY
FERTILIZATION
SPECIES COMPOSITION
GRASSLAND
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Human activities are altering ecological communities around the globe. Understanding the implications of these changes requires that we consider the composition of those communities. However, composition can be summarized by many metrics which in turn are influenced by different ecological processes. For example, incidence-based metrics strongly reflect species gains or losses, while abundance-based metrics are minimally affected by changes in the abundance of small or uncommon species. Furthermore, metrics might be correlated with different predictors. We used a globally distributed experiment to examine variation in species composition within 60 grasslands on six continents. Each site had an identical experimental and sampling design: 24 plots × 4 years. We expressed compositional variation within each site—not across sites—using abundance- and incidence-based metrics of the magnitude of dissimilarity (Bray–Curtis and Sorensen, respectively), abundance- and incidence-based measures of the relative importance of replacement (balanced variation and species turnover, respectively), and species richness at two scales (per plot-year [alpha] and per site [gamma]). Average compositional variation among all plot-years at a site was high and similar to spatial variation among plots in the pretreatment year, but lower among years in untreated plots. For both types of metrics, most variation was due to replacement rather than nestedness. Differences among sites in overall within-site compositional variation were related to several predictors. Environmental heterogeneity (expressed as the CV of total aboveground plant biomass in unfertilized plots of the site) was an important predictor for most metrics. Biomass production was a predictor of species turnover and of alpha diversity but not of other metrics. Continentality (measured as annual temperature range) was a strong predictor of Sorensen dissimilarity. Metrics of compositional variation are moderately correlated: knowing the magnitude of dissimilarity at a site provides little insight into whether the variation is driven by replacement processes. Overall, our understanding of compositional variation at a site is enhanced by considering multiple metrics simultaneously. Monitoring programs that explicitly incorporate these implications, both when designing sampling strategies and analyzing data, will have a stronger ability to understand the compositional variation of systems and to quantify the impacts of human activities.
Fil: Bakker, Jonathan. University of Washington; Estados Unidos
Fil: Price, Jodi N.. Charles Sturt University; Australia
Fil: Henning, Jeremiah A.. University of Minnesota; Estados Unidos. University of South Alabama; Estados Unidos
Fil: Batzer, Evan E.. University of California at Davis; Estados Unidos
Fil: Ohlert, Timothy. University of New Mexico; Estados Unidos
Fil: Wainwright, Claire E.. University of Washington; Estados Unidos
Fil: Adler, Peter. State University of Utah; Estados Unidos
Fil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
Fil: Arnillas, Carlos Alberto. University of Toronto; Canadá
Fil: Biederman, Lori A.. Iowa State University; Estados Unidos
Fil: Borer, Elizabeth. University of Minnesota; Estados Unidos
Fil: Brudvig, Lars A.. Michigan State University; Estados Unidos
Fil: Buckley, Yvonne M.. Trinity College Dublin; Irlanda
Fil: Bugalho, Miguel N.. Universidade de Lisboa; Portugal
Fil: Cadotte, Marc W.. University of Toronto; Canadá
Fil: Caldeira, Maria C.. Universidade de Lisboa; Portugal
Fil: Catford, Jane A.. Kings College London (kcl);
Fil: Qingqing, Chen. Peking University; China
Fil: Crawley, Michael J.. Imperial College. London Institute Of Medical Sciences.;
Fil: Daleo, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina
Fil: Dickman, Chris R.. University of Sydney; Australia
Fil: Donohue, Ian. Trinity College Dublin; Irlanda
Fil: DuPre, Mary Ellyn. Mpg Ranch; Estados Unidos
Fil: Eisenhauer, Nico. German Centre For Integrative Biodiversity Research; Alemania. Universitat Leipzig; Alemania
Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria; Argentina
Fil: Roscher, Christiane. German Centre For Integrative Biodiversity Research; Alemania
Fil: Tedder, Michelle. University Of Kwazulu-natal; Sudáfrica
Fil: Veen, G. F.. Netherlands Institute Of Ecology; Países Bajos
Fil: Virtanen, Risto. University Of Oulu; Finlandia
Fil: Wardle, Glenda M.. The University Of Sydney; Australia
description Human activities are altering ecological communities around the globe. Understanding the implications of these changes requires that we consider the composition of those communities. However, composition can be summarized by many metrics which in turn are influenced by different ecological processes. For example, incidence-based metrics strongly reflect species gains or losses, while abundance-based metrics are minimally affected by changes in the abundance of small or uncommon species. Furthermore, metrics might be correlated with different predictors. We used a globally distributed experiment to examine variation in species composition within 60 grasslands on six continents. Each site had an identical experimental and sampling design: 24 plots × 4 years. We expressed compositional variation within each site—not across sites—using abundance- and incidence-based metrics of the magnitude of dissimilarity (Bray–Curtis and Sorensen, respectively), abundance- and incidence-based measures of the relative importance of replacement (balanced variation and species turnover, respectively), and species richness at two scales (per plot-year [alpha] and per site [gamma]). Average compositional variation among all plot-years at a site was high and similar to spatial variation among plots in the pretreatment year, but lower among years in untreated plots. For both types of metrics, most variation was due to replacement rather than nestedness. Differences among sites in overall within-site compositional variation were related to several predictors. Environmental heterogeneity (expressed as the CV of total aboveground plant biomass in unfertilized plots of the site) was an important predictor for most metrics. Biomass production was a predictor of species turnover and of alpha diversity but not of other metrics. Continentality (measured as annual temperature range) was a strong predictor of Sorensen dissimilarity. Metrics of compositional variation are moderately correlated: knowing the magnitude of dissimilarity at a site provides little insight into whether the variation is driven by replacement processes. Overall, our understanding of compositional variation at a site is enhanced by considering multiple metrics simultaneously. Monitoring programs that explicitly incorporate these implications, both when designing sampling strategies and analyzing data, will have a stronger ability to understand the compositional variation of systems and to quantify the impacts of human activities.
publishDate 2023
dc.date.none.fl_str_mv 2023-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/220496
Bakker, Jonathan; Price, Jodi N.; Henning, Jeremiah A.; Batzer, Evan E.; Ohlert, Timothy; et al.; Compositional variation in grassland plant communities; Wiley; Ecosphere; 14; e454; 6-2023; 1-17
2150-8925
CONICET Digital
CONICET
url http://hdl.handle.net/11336/220496
identifier_str_mv Bakker, Jonathan; Price, Jodi N.; Henning, Jeremiah A.; Batzer, Evan E.; Ohlert, Timothy; et al.; Compositional variation in grassland plant communities; Wiley; Ecosphere; 14; e454; 6-2023; 1-17
2150-8925
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecs2.4542
info:eu-repo/semantics/altIdentifier/doi/10.1002/ecs2.4542
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613139131269120
score 13.070432