A circular model for song motor control in Serinus canaria
- Autores
- Alonso, Rodrigo; Trevisan, Marcos Alberto; Amador, Ana; Goller, Franz; Mindlin, Bernardo Gabriel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Song production in songbirds is controlled by a network of nuclei distributed across several brain regions, which drives respiratory and vocal motor systems to generate sound. We built a model for birdsong production, whose variables are the average activities of different neural populations within these nuclei of the song system. We focus on the predictions of respiratory patterns of song, because these can be easily measured and therefore provide a validation for the model. We test the hypothesis that it is possible to construct a model in which (1) the activity of an expiratory related (ER) neural population fits the observed pressure patterns used by canaries during singing, and (2) a higher forebrain neural population, HVC, is sparsely active, simultaneously with significant motor instances of the pressure patterns. We show that in order to achieve these two requirements, the ER neural population needs to receive two inputs: a direct one, and its copy after being processed by other areas of the song system. The model is capable of reproducing the measured respiratory patterns and makes specific predictions on the timing of HVC activity during their production. These results suggest that vocal production is controlled by a circular network rather than by a simple top-down architecture.
Fil: Alonso, Rodrigo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Trevisan, Marcos Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Amador, Ana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Goller, Franz. University Of Utah. Department Of Biology; Estados Unidos
Fil: Mindlin, Bernardo Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
NONLINEAR DYNAMICS
RATE MODELS
BIRDSONG
SONG SYSTEM
MOTOR CONTROL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/43506
Ver los metadatos del registro completo
id |
CONICETDig_6b3761c7906e70b3b0003afcd891b2db |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/43506 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A circular model for song motor control in Serinus canariaAlonso, RodrigoTrevisan, Marcos AlbertoAmador, AnaGoller, FranzMindlin, Bernardo GabrielNONLINEAR DYNAMICSRATE MODELSBIRDSONGSONG SYSTEMMOTOR CONTROLhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Song production in songbirds is controlled by a network of nuclei distributed across several brain regions, which drives respiratory and vocal motor systems to generate sound. We built a model for birdsong production, whose variables are the average activities of different neural populations within these nuclei of the song system. We focus on the predictions of respiratory patterns of song, because these can be easily measured and therefore provide a validation for the model. We test the hypothesis that it is possible to construct a model in which (1) the activity of an expiratory related (ER) neural population fits the observed pressure patterns used by canaries during singing, and (2) a higher forebrain neural population, HVC, is sparsely active, simultaneously with significant motor instances of the pressure patterns. We show that in order to achieve these two requirements, the ER neural population needs to receive two inputs: a direct one, and its copy after being processed by other areas of the song system. The model is capable of reproducing the measured respiratory patterns and makes specific predictions on the timing of HVC activity during their production. These results suggest that vocal production is controlled by a circular network rather than by a simple top-down architecture.Fil: Alonso, Rodrigo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Trevisan, Marcos Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Amador, Ana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goller, Franz. University Of Utah. Department Of Biology; Estados UnidosFil: Mindlin, Bernardo Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFrontiers Research Foundation2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/43506Alonso, Rodrigo; Trevisan, Marcos Alberto; Amador, Ana; Goller, Franz; Mindlin, Bernardo Gabriel; A circular model for song motor control in Serinus canaria; Frontiers Research Foundation; Frontiers in Computational Neuroscience; 9; 3-2015; 1-91662-5188CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fncom.2015.00041/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fncom.2015.00041info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:06Zoai:ri.conicet.gov.ar:11336/43506instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:06.543CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A circular model for song motor control in Serinus canaria |
title |
A circular model for song motor control in Serinus canaria |
spellingShingle |
A circular model for song motor control in Serinus canaria Alonso, Rodrigo NONLINEAR DYNAMICS RATE MODELS BIRDSONG SONG SYSTEM MOTOR CONTROL |
title_short |
A circular model for song motor control in Serinus canaria |
title_full |
A circular model for song motor control in Serinus canaria |
title_fullStr |
A circular model for song motor control in Serinus canaria |
title_full_unstemmed |
A circular model for song motor control in Serinus canaria |
title_sort |
A circular model for song motor control in Serinus canaria |
dc.creator.none.fl_str_mv |
Alonso, Rodrigo Trevisan, Marcos Alberto Amador, Ana Goller, Franz Mindlin, Bernardo Gabriel |
author |
Alonso, Rodrigo |
author_facet |
Alonso, Rodrigo Trevisan, Marcos Alberto Amador, Ana Goller, Franz Mindlin, Bernardo Gabriel |
author_role |
author |
author2 |
Trevisan, Marcos Alberto Amador, Ana Goller, Franz Mindlin, Bernardo Gabriel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
NONLINEAR DYNAMICS RATE MODELS BIRDSONG SONG SYSTEM MOTOR CONTROL |
topic |
NONLINEAR DYNAMICS RATE MODELS BIRDSONG SONG SYSTEM MOTOR CONTROL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Song production in songbirds is controlled by a network of nuclei distributed across several brain regions, which drives respiratory and vocal motor systems to generate sound. We built a model for birdsong production, whose variables are the average activities of different neural populations within these nuclei of the song system. We focus on the predictions of respiratory patterns of song, because these can be easily measured and therefore provide a validation for the model. We test the hypothesis that it is possible to construct a model in which (1) the activity of an expiratory related (ER) neural population fits the observed pressure patterns used by canaries during singing, and (2) a higher forebrain neural population, HVC, is sparsely active, simultaneously with significant motor instances of the pressure patterns. We show that in order to achieve these two requirements, the ER neural population needs to receive two inputs: a direct one, and its copy after being processed by other areas of the song system. The model is capable of reproducing the measured respiratory patterns and makes specific predictions on the timing of HVC activity during their production. These results suggest that vocal production is controlled by a circular network rather than by a simple top-down architecture. Fil: Alonso, Rodrigo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Trevisan, Marcos Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Amador, Ana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Goller, Franz. University Of Utah. Department Of Biology; Estados Unidos Fil: Mindlin, Bernardo Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Song production in songbirds is controlled by a network of nuclei distributed across several brain regions, which drives respiratory and vocal motor systems to generate sound. We built a model for birdsong production, whose variables are the average activities of different neural populations within these nuclei of the song system. We focus on the predictions of respiratory patterns of song, because these can be easily measured and therefore provide a validation for the model. We test the hypothesis that it is possible to construct a model in which (1) the activity of an expiratory related (ER) neural population fits the observed pressure patterns used by canaries during singing, and (2) a higher forebrain neural population, HVC, is sparsely active, simultaneously with significant motor instances of the pressure patterns. We show that in order to achieve these two requirements, the ER neural population needs to receive two inputs: a direct one, and its copy after being processed by other areas of the song system. The model is capable of reproducing the measured respiratory patterns and makes specific predictions on the timing of HVC activity during their production. These results suggest that vocal production is controlled by a circular network rather than by a simple top-down architecture. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/43506 Alonso, Rodrigo; Trevisan, Marcos Alberto; Amador, Ana; Goller, Franz; Mindlin, Bernardo Gabriel; A circular model for song motor control in Serinus canaria; Frontiers Research Foundation; Frontiers in Computational Neuroscience; 9; 3-2015; 1-9 1662-5188 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/43506 |
identifier_str_mv |
Alonso, Rodrigo; Trevisan, Marcos Alberto; Amador, Ana; Goller, Franz; Mindlin, Bernardo Gabriel; A circular model for song motor control in Serinus canaria; Frontiers Research Foundation; Frontiers in Computational Neuroscience; 9; 3-2015; 1-9 1662-5188 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fncom.2015.00041/full info:eu-repo/semantics/altIdentifier/doi/10.3389/fncom.2015.00041 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Research Foundation |
publisher.none.fl_str_mv |
Frontiers Research Foundation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268774390038528 |
score |
13.13397 |