Dynamical model for the neural activity of singing Serinus canaria
- Autores
- Herbert, Cecilia Thomsett; Boari, Santiago; Mindlin, Bernardo Gabriel; Amador, Ana
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Vocal production in songbirds is a key topic regarding the motor control of a complex, learned behavior. Birdsong is the result of the interaction between the activity of an intricate set of neural nuclei specifically dedicated to song production and learning (known as the "song system"), the respiratory system and the vocal organ. These systems interact and give rise to precise biomechanical motor gestures which result in song production. Telencephalic neural nuclei play a key role in the production of motor commands that drive the periphery, and while several attempts have been made to understand their coding strategy, difficulties arise when trying to understand neural activity in the frame of the song system as a whole. In this work, we report neural additive models embedded in an architecture compatible with the song system to provide a tool to reduce the dimensionality of the problem by considering the global activity of the units in each neural nucleus. This model is capable of generating outputs compatible with measurements of air sac pressure during song production in canaries (Serinus canaria). In this work, we show that the activity in a telencephalic nucleus required by the model to reproduce the observed respiratory gestures is compatible with electrophysiological recordings of single neuron activity in freely behaving animals.
Fil: Herbert, Cecilia Thomsett. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Boari, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Amador, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
Birdsong
Dynamics
Models
Biophysics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/146108
Ver los metadatos del registro completo
id |
CONICETDig_3e08bb914accad3910189f7f3302f9c4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/146108 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dynamical model for the neural activity of singing Serinus canariaHerbert, Cecilia ThomsettBoari, SantiagoMindlin, Bernardo GabrielAmador, AnaBirdsongDynamicsModelsBiophysicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Vocal production in songbirds is a key topic regarding the motor control of a complex, learned behavior. Birdsong is the result of the interaction between the activity of an intricate set of neural nuclei specifically dedicated to song production and learning (known as the "song system"), the respiratory system and the vocal organ. These systems interact and give rise to precise biomechanical motor gestures which result in song production. Telencephalic neural nuclei play a key role in the production of motor commands that drive the periphery, and while several attempts have been made to understand their coding strategy, difficulties arise when trying to understand neural activity in the frame of the song system as a whole. In this work, we report neural additive models embedded in an architecture compatible with the song system to provide a tool to reduce the dimensionality of the problem by considering the global activity of the units in each neural nucleus. This model is capable of generating outputs compatible with measurements of air sac pressure during song production in canaries (Serinus canaria). In this work, we show that the activity in a telencephalic nucleus required by the model to reproduce the observed respiratory gestures is compatible with electrophysiological recordings of single neuron activity in freely behaving animals.Fil: Herbert, Cecilia Thomsett. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Boari, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Amador, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Institute of Physics2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146108Herbert, Cecilia Thomsett; Boari, Santiago; Mindlin, Bernardo Gabriel; Amador, Ana; Dynamical model for the neural activity of singing Serinus canaria; American Institute of Physics; Chaos; 30; 5; 5-2020; 1-111054-1500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5145093info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5145093info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:29Zoai:ri.conicet.gov.ar:11336/146108instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:30.022CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dynamical model for the neural activity of singing Serinus canaria |
title |
Dynamical model for the neural activity of singing Serinus canaria |
spellingShingle |
Dynamical model for the neural activity of singing Serinus canaria Herbert, Cecilia Thomsett Birdsong Dynamics Models Biophysics |
title_short |
Dynamical model for the neural activity of singing Serinus canaria |
title_full |
Dynamical model for the neural activity of singing Serinus canaria |
title_fullStr |
Dynamical model for the neural activity of singing Serinus canaria |
title_full_unstemmed |
Dynamical model for the neural activity of singing Serinus canaria |
title_sort |
Dynamical model for the neural activity of singing Serinus canaria |
dc.creator.none.fl_str_mv |
Herbert, Cecilia Thomsett Boari, Santiago Mindlin, Bernardo Gabriel Amador, Ana |
author |
Herbert, Cecilia Thomsett |
author_facet |
Herbert, Cecilia Thomsett Boari, Santiago Mindlin, Bernardo Gabriel Amador, Ana |
author_role |
author |
author2 |
Boari, Santiago Mindlin, Bernardo Gabriel Amador, Ana |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Birdsong Dynamics Models Biophysics |
topic |
Birdsong Dynamics Models Biophysics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Vocal production in songbirds is a key topic regarding the motor control of a complex, learned behavior. Birdsong is the result of the interaction between the activity of an intricate set of neural nuclei specifically dedicated to song production and learning (known as the "song system"), the respiratory system and the vocal organ. These systems interact and give rise to precise biomechanical motor gestures which result in song production. Telencephalic neural nuclei play a key role in the production of motor commands that drive the periphery, and while several attempts have been made to understand their coding strategy, difficulties arise when trying to understand neural activity in the frame of the song system as a whole. In this work, we report neural additive models embedded in an architecture compatible with the song system to provide a tool to reduce the dimensionality of the problem by considering the global activity of the units in each neural nucleus. This model is capable of generating outputs compatible with measurements of air sac pressure during song production in canaries (Serinus canaria). In this work, we show that the activity in a telencephalic nucleus required by the model to reproduce the observed respiratory gestures is compatible with electrophysiological recordings of single neuron activity in freely behaving animals. Fil: Herbert, Cecilia Thomsett. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Boari, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Amador, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
Vocal production in songbirds is a key topic regarding the motor control of a complex, learned behavior. Birdsong is the result of the interaction between the activity of an intricate set of neural nuclei specifically dedicated to song production and learning (known as the "song system"), the respiratory system and the vocal organ. These systems interact and give rise to precise biomechanical motor gestures which result in song production. Telencephalic neural nuclei play a key role in the production of motor commands that drive the periphery, and while several attempts have been made to understand their coding strategy, difficulties arise when trying to understand neural activity in the frame of the song system as a whole. In this work, we report neural additive models embedded in an architecture compatible with the song system to provide a tool to reduce the dimensionality of the problem by considering the global activity of the units in each neural nucleus. This model is capable of generating outputs compatible with measurements of air sac pressure during song production in canaries (Serinus canaria). In this work, we show that the activity in a telencephalic nucleus required by the model to reproduce the observed respiratory gestures is compatible with electrophysiological recordings of single neuron activity in freely behaving animals. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/146108 Herbert, Cecilia Thomsett; Boari, Santiago; Mindlin, Bernardo Gabriel; Amador, Ana; Dynamical model for the neural activity of singing Serinus canaria; American Institute of Physics; Chaos; 30; 5; 5-2020; 1-11 1054-1500 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/146108 |
identifier_str_mv |
Herbert, Cecilia Thomsett; Boari, Santiago; Mindlin, Bernardo Gabriel; Amador, Ana; Dynamical model for the neural activity of singing Serinus canaria; American Institute of Physics; Chaos; 30; 5; 5-2020; 1-11 1054-1500 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5145093 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5145093 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269913579782144 |
score |
13.13397 |