Fast nonlinear region localisation for nonlinear dielectric spectroscopy of biological suspensions

Autores
Ruiz, Gabriel Alfredo; Felice, Carmelo Jose
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The nonlinear properties of biological suspensions have been previously presented as a bulk phenomenon without the influences of the electrodes. However, some authors have showed that the behaviour of a biological suspension is due to the nonlinear characteristics of the electrode–electrolyte interface (EEI), which is modulated by the presence of yeast cells. We have developed a method, complementary to the nonlinear dielectric spectroscopy (NLDS) which is used for the study of the behaviour of EEI with resting cell suspensions of Saccharomyces cerevisiae. The method allows researchers to detect simply and quickly the voltage and frequency ranges where the metabolic activity of yeasts is detectable. This method does not replace NLDS, and aims to reduce the time during which the electrodes are exposed to corrosion by high voltages. In this paper we applied AC overpotentials (10–630 mV) with frequencies in the range from 1 to 1000 Hz. Also, we measured current harmonic distortion produced by the nonlinearity of the interface. Changes in the transfer function were observed when yeast suspension was used. Apart from the nonlinear response typical of the EEI, we also observed the biological nonlinear behaviour. The changes in the transfer functions were assessed using the overlapping index which was defined in terms of the conditional probability. The methodology was contrasted favourably with Fourier analysis. This novel strategy has the advantages of simplicity, sensitivity, reproducibility and involves basic tools such as the usual measurement of current.
Fil: Ruiz, Gabriel Alfredo. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Felice, Carmelo Jose. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Yeast
Impedance
Non-Linear
Algorithm
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/21991

id CONICETDig_6b1d965e5039f53f40636f8f2d398cad
oai_identifier_str oai:ri.conicet.gov.ar:11336/21991
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Fast nonlinear region localisation for nonlinear dielectric spectroscopy of biological suspensionsRuiz, Gabriel AlfredoFelice, Carmelo JoseYeastImpedanceNon-LinearAlgorithmThe nonlinear properties of biological suspensions have been previously presented as a bulk phenomenon without the influences of the electrodes. However, some authors have showed that the behaviour of a biological suspension is due to the nonlinear characteristics of the electrode–electrolyte interface (EEI), which is modulated by the presence of yeast cells. We have developed a method, complementary to the nonlinear dielectric spectroscopy (NLDS) which is used for the study of the behaviour of EEI with resting cell suspensions of Saccharomyces cerevisiae. The method allows researchers to detect simply and quickly the voltage and frequency ranges where the metabolic activity of yeasts is detectable. This method does not replace NLDS, and aims to reduce the time during which the electrodes are exposed to corrosion by high voltages. In this paper we applied AC overpotentials (10–630 mV) with frequencies in the range from 1 to 1000 Hz. Also, we measured current harmonic distortion produced by the nonlinearity of the interface. Changes in the transfer function were observed when yeast suspension was used. Apart from the nonlinear response typical of the EEI, we also observed the biological nonlinear behaviour. The changes in the transfer functions were assessed using the overlapping index which was defined in terms of the conditional probability. The methodology was contrasted favourably with Fourier analysis. This novel strategy has the advantages of simplicity, sensitivity, reproducibility and involves basic tools such as the usual measurement of current.Fil: Ruiz, Gabriel Alfredo. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Felice, Carmelo Jose. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21991Ruiz, Gabriel Alfredo; Felice, Carmelo Jose; Fast nonlinear region localisation for nonlinear dielectric spectroscopy of biological suspensions; Elsevier Science; Biosensors & Bioelectronics; 49; 6-2013; 341-3470956-5663CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.bios.2013.05.043info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0956566313003771info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:51Zoai:ri.conicet.gov.ar:11336/21991instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:51.54CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Fast nonlinear region localisation for nonlinear dielectric spectroscopy of biological suspensions
title Fast nonlinear region localisation for nonlinear dielectric spectroscopy of biological suspensions
spellingShingle Fast nonlinear region localisation for nonlinear dielectric spectroscopy of biological suspensions
Ruiz, Gabriel Alfredo
Yeast
Impedance
Non-Linear
Algorithm
title_short Fast nonlinear region localisation for nonlinear dielectric spectroscopy of biological suspensions
title_full Fast nonlinear region localisation for nonlinear dielectric spectroscopy of biological suspensions
title_fullStr Fast nonlinear region localisation for nonlinear dielectric spectroscopy of biological suspensions
title_full_unstemmed Fast nonlinear region localisation for nonlinear dielectric spectroscopy of biological suspensions
title_sort Fast nonlinear region localisation for nonlinear dielectric spectroscopy of biological suspensions
dc.creator.none.fl_str_mv Ruiz, Gabriel Alfredo
Felice, Carmelo Jose
author Ruiz, Gabriel Alfredo
author_facet Ruiz, Gabriel Alfredo
Felice, Carmelo Jose
author_role author
author2 Felice, Carmelo Jose
author2_role author
dc.subject.none.fl_str_mv Yeast
Impedance
Non-Linear
Algorithm
topic Yeast
Impedance
Non-Linear
Algorithm
dc.description.none.fl_txt_mv The nonlinear properties of biological suspensions have been previously presented as a bulk phenomenon without the influences of the electrodes. However, some authors have showed that the behaviour of a biological suspension is due to the nonlinear characteristics of the electrode–electrolyte interface (EEI), which is modulated by the presence of yeast cells. We have developed a method, complementary to the nonlinear dielectric spectroscopy (NLDS) which is used for the study of the behaviour of EEI with resting cell suspensions of Saccharomyces cerevisiae. The method allows researchers to detect simply and quickly the voltage and frequency ranges where the metabolic activity of yeasts is detectable. This method does not replace NLDS, and aims to reduce the time during which the electrodes are exposed to corrosion by high voltages. In this paper we applied AC overpotentials (10–630 mV) with frequencies in the range from 1 to 1000 Hz. Also, we measured current harmonic distortion produced by the nonlinearity of the interface. Changes in the transfer function were observed when yeast suspension was used. Apart from the nonlinear response typical of the EEI, we also observed the biological nonlinear behaviour. The changes in the transfer functions were assessed using the overlapping index which was defined in terms of the conditional probability. The methodology was contrasted favourably with Fourier analysis. This novel strategy has the advantages of simplicity, sensitivity, reproducibility and involves basic tools such as the usual measurement of current.
Fil: Ruiz, Gabriel Alfredo. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Felice, Carmelo Jose. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The nonlinear properties of biological suspensions have been previously presented as a bulk phenomenon without the influences of the electrodes. However, some authors have showed that the behaviour of a biological suspension is due to the nonlinear characteristics of the electrode–electrolyte interface (EEI), which is modulated by the presence of yeast cells. We have developed a method, complementary to the nonlinear dielectric spectroscopy (NLDS) which is used for the study of the behaviour of EEI with resting cell suspensions of Saccharomyces cerevisiae. The method allows researchers to detect simply and quickly the voltage and frequency ranges where the metabolic activity of yeasts is detectable. This method does not replace NLDS, and aims to reduce the time during which the electrodes are exposed to corrosion by high voltages. In this paper we applied AC overpotentials (10–630 mV) with frequencies in the range from 1 to 1000 Hz. Also, we measured current harmonic distortion produced by the nonlinearity of the interface. Changes in the transfer function were observed when yeast suspension was used. Apart from the nonlinear response typical of the EEI, we also observed the biological nonlinear behaviour. The changes in the transfer functions were assessed using the overlapping index which was defined in terms of the conditional probability. The methodology was contrasted favourably with Fourier analysis. This novel strategy has the advantages of simplicity, sensitivity, reproducibility and involves basic tools such as the usual measurement of current.
publishDate 2013
dc.date.none.fl_str_mv 2013-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/21991
Ruiz, Gabriel Alfredo; Felice, Carmelo Jose; Fast nonlinear region localisation for nonlinear dielectric spectroscopy of biological suspensions; Elsevier Science; Biosensors & Bioelectronics; 49; 6-2013; 341-347
0956-5663
CONICET Digital
CONICET
url http://hdl.handle.net/11336/21991
identifier_str_mv Ruiz, Gabriel Alfredo; Felice, Carmelo Jose; Fast nonlinear region localisation for nonlinear dielectric spectroscopy of biological suspensions; Elsevier Science; Biosensors & Bioelectronics; 49; 6-2013; 341-347
0956-5663
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bios.2013.05.043
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0956566313003771
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614154252451840
score 13.070432