The interplanetary magnetic structure that guides solar relativistic particles

Autores
Masson, S.; Démoulin, Pascal; Dasso, Sergio Ricardo; Klein, K. L.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. Relating in-situ measurements of relativistic solar particles to their parent activity in the corona requires understanding the magnetic structures that guide them from their acceleration site to the Earth. Relativistic particle events are observed at times of high solar activity, when transient magnetic structures such as interplanetary coronal mass ejections (ICMEs) often shape the interplanetary magnetic field (IMF). They may introduce interplanetary paths that are longer than nominal, and magnetic connections rooted far from the nominal Parker spiral. Aims. We present a detailed study of the IMF configurations during ten relativistic solar particle events of the 23rd activity cycle to elucidate the actual IMF configuration that guides the particles to the Earth, where they are measured by neutron monitors. Methods. We used magnetic field (MAG) and plasma parameter measurements (SWEPAM) from the ACE spacecraft and determined the interplanetary path lengths of energetic particles through a modified version of the velocity dispersion analysis based on energetic particle measurements with SoHO/ERNE. Results. We find that the majority (7/10) of the events is detected in the vicinity of an ICME. Their interplanetary path lengths are found to be longer (1.5-2.6 AU) than those of the two events propagating in the slow solar wind (1.3 AU). The longest apparent path length is found in an event within the fast solar wind, probably caused by enhanced pitch angle scattering. The derived path lengths imply that the first energetic and relativistic protons are released at the Sun at the same time as electron beam emitting type III radio bursts. Conclusions. The timing of the first high-energy particle arrival on Earth is mainly determined by the type of IMF in which the particles propagate. Initial arrival times are as expected from Parker's model in the slow solar wind, and significantly longer in or near transient structures such as ICMEs. © 2012 ESO.
Fil: Masson, S.. Université Paris Diderot - Paris 7; Francia
Fil: Démoulin, Pascal. Université Paris Diderot - Paris 7; Francia
Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Klein, K. L.. Université Paris Diderot - Paris 7; Francia
Materia
METHODS: DATA ANALYSIS
SOLAR-TERRESTRIAL RELATIONS
SUN: HELIOSPHERE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/76776

id CONICETDig_6ae553706e5cc40c6b7915831e7e1aea
oai_identifier_str oai:ri.conicet.gov.ar:11336/76776
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The interplanetary magnetic structure that guides solar relativistic particlesMasson, S.Démoulin, PascalDasso, Sergio RicardoKlein, K. L.METHODS: DATA ANALYSISSOLAR-TERRESTRIAL RELATIONSSUN: HELIOSPHEREhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. Relating in-situ measurements of relativistic solar particles to their parent activity in the corona requires understanding the magnetic structures that guide them from their acceleration site to the Earth. Relativistic particle events are observed at times of high solar activity, when transient magnetic structures such as interplanetary coronal mass ejections (ICMEs) often shape the interplanetary magnetic field (IMF). They may introduce interplanetary paths that are longer than nominal, and magnetic connections rooted far from the nominal Parker spiral. Aims. We present a detailed study of the IMF configurations during ten relativistic solar particle events of the 23rd activity cycle to elucidate the actual IMF configuration that guides the particles to the Earth, where they are measured by neutron monitors. Methods. We used magnetic field (MAG) and plasma parameter measurements (SWEPAM) from the ACE spacecraft and determined the interplanetary path lengths of energetic particles through a modified version of the velocity dispersion analysis based on energetic particle measurements with SoHO/ERNE. Results. We find that the majority (7/10) of the events is detected in the vicinity of an ICME. Their interplanetary path lengths are found to be longer (1.5-2.6 AU) than those of the two events propagating in the slow solar wind (1.3 AU). The longest apparent path length is found in an event within the fast solar wind, probably caused by enhanced pitch angle scattering. The derived path lengths imply that the first energetic and relativistic protons are released at the Sun at the same time as electron beam emitting type III radio bursts. Conclusions. The timing of the first high-energy particle arrival on Earth is mainly determined by the type of IMF in which the particles propagate. Initial arrival times are as expected from Parker's model in the slow solar wind, and significantly longer in or near transient structures such as ICMEs. © 2012 ESO.Fil: Masson, S.. Université Paris Diderot - Paris 7; FranciaFil: Démoulin, Pascal. Université Paris Diderot - Paris 7; FranciaFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Klein, K. L.. Université Paris Diderot - Paris 7; FranciaEDP Sciences2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76776Masson, S.; Démoulin, Pascal; Dasso, Sergio Ricardo; Klein, K. L.; The interplanetary magnetic structure that guides solar relativistic particles; EDP Sciences; Astronomy and Astrophysics; 538; 1-2012; 32-520004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201118145info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:40Zoai:ri.conicet.gov.ar:11336/76776instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:40.731CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The interplanetary magnetic structure that guides solar relativistic particles
title The interplanetary magnetic structure that guides solar relativistic particles
spellingShingle The interplanetary magnetic structure that guides solar relativistic particles
Masson, S.
METHODS: DATA ANALYSIS
SOLAR-TERRESTRIAL RELATIONS
SUN: HELIOSPHERE
title_short The interplanetary magnetic structure that guides solar relativistic particles
title_full The interplanetary magnetic structure that guides solar relativistic particles
title_fullStr The interplanetary magnetic structure that guides solar relativistic particles
title_full_unstemmed The interplanetary magnetic structure that guides solar relativistic particles
title_sort The interplanetary magnetic structure that guides solar relativistic particles
dc.creator.none.fl_str_mv Masson, S.
Démoulin, Pascal
Dasso, Sergio Ricardo
Klein, K. L.
author Masson, S.
author_facet Masson, S.
Démoulin, Pascal
Dasso, Sergio Ricardo
Klein, K. L.
author_role author
author2 Démoulin, Pascal
Dasso, Sergio Ricardo
Klein, K. L.
author2_role author
author
author
dc.subject.none.fl_str_mv METHODS: DATA ANALYSIS
SOLAR-TERRESTRIAL RELATIONS
SUN: HELIOSPHERE
topic METHODS: DATA ANALYSIS
SOLAR-TERRESTRIAL RELATIONS
SUN: HELIOSPHERE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Context. Relating in-situ measurements of relativistic solar particles to their parent activity in the corona requires understanding the magnetic structures that guide them from their acceleration site to the Earth. Relativistic particle events are observed at times of high solar activity, when transient magnetic structures such as interplanetary coronal mass ejections (ICMEs) often shape the interplanetary magnetic field (IMF). They may introduce interplanetary paths that are longer than nominal, and magnetic connections rooted far from the nominal Parker spiral. Aims. We present a detailed study of the IMF configurations during ten relativistic solar particle events of the 23rd activity cycle to elucidate the actual IMF configuration that guides the particles to the Earth, where they are measured by neutron monitors. Methods. We used magnetic field (MAG) and plasma parameter measurements (SWEPAM) from the ACE spacecraft and determined the interplanetary path lengths of energetic particles through a modified version of the velocity dispersion analysis based on energetic particle measurements with SoHO/ERNE. Results. We find that the majority (7/10) of the events is detected in the vicinity of an ICME. Their interplanetary path lengths are found to be longer (1.5-2.6 AU) than those of the two events propagating in the slow solar wind (1.3 AU). The longest apparent path length is found in an event within the fast solar wind, probably caused by enhanced pitch angle scattering. The derived path lengths imply that the first energetic and relativistic protons are released at the Sun at the same time as electron beam emitting type III radio bursts. Conclusions. The timing of the first high-energy particle arrival on Earth is mainly determined by the type of IMF in which the particles propagate. Initial arrival times are as expected from Parker's model in the slow solar wind, and significantly longer in or near transient structures such as ICMEs. © 2012 ESO.
Fil: Masson, S.. Université Paris Diderot - Paris 7; Francia
Fil: Démoulin, Pascal. Université Paris Diderot - Paris 7; Francia
Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Klein, K. L.. Université Paris Diderot - Paris 7; Francia
description Context. Relating in-situ measurements of relativistic solar particles to their parent activity in the corona requires understanding the magnetic structures that guide them from their acceleration site to the Earth. Relativistic particle events are observed at times of high solar activity, when transient magnetic structures such as interplanetary coronal mass ejections (ICMEs) often shape the interplanetary magnetic field (IMF). They may introduce interplanetary paths that are longer than nominal, and magnetic connections rooted far from the nominal Parker spiral. Aims. We present a detailed study of the IMF configurations during ten relativistic solar particle events of the 23rd activity cycle to elucidate the actual IMF configuration that guides the particles to the Earth, where they are measured by neutron monitors. Methods. We used magnetic field (MAG) and plasma parameter measurements (SWEPAM) from the ACE spacecraft and determined the interplanetary path lengths of energetic particles through a modified version of the velocity dispersion analysis based on energetic particle measurements with SoHO/ERNE. Results. We find that the majority (7/10) of the events is detected in the vicinity of an ICME. Their interplanetary path lengths are found to be longer (1.5-2.6 AU) than those of the two events propagating in the slow solar wind (1.3 AU). The longest apparent path length is found in an event within the fast solar wind, probably caused by enhanced pitch angle scattering. The derived path lengths imply that the first energetic and relativistic protons are released at the Sun at the same time as electron beam emitting type III radio bursts. Conclusions. The timing of the first high-energy particle arrival on Earth is mainly determined by the type of IMF in which the particles propagate. Initial arrival times are as expected from Parker's model in the slow solar wind, and significantly longer in or near transient structures such as ICMEs. © 2012 ESO.
publishDate 2012
dc.date.none.fl_str_mv 2012-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/76776
Masson, S.; Démoulin, Pascal; Dasso, Sergio Ricardo; Klein, K. L.; The interplanetary magnetic structure that guides solar relativistic particles; EDP Sciences; Astronomy and Astrophysics; 538; 1-2012; 32-52
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/76776
identifier_str_mv Masson, S.; Démoulin, Pascal; Dasso, Sergio Ricardo; Klein, K. L.; The interplanetary magnetic structure that guides solar relativistic particles; EDP Sciences; Astronomy and Astrophysics; 538; 1-2012; 32-52
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201118145
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613855845548032
score 13.070432