Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays

Autores
Masías Meza, Jimmy Joel; Dasso, Sergio Ricardo; Démoulin, Pascal; Rodriguez L.; Janvier, M.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. Interplanetary coronal mass ejections (ICMEs) are the interplanetary manifestations of solar eruptions. The overtaken solar wind forms a sheath of compressed plasma at the front of ICMEs. Magnetic clouds (MCs) are a subset of ICMEs with specific properties (e.g. the presence of a flux rope). When ICMEs pass near Earth, ground observations indicate that the flux of Galactic cosmic rays (GCRs) decreases. Aims. The main aims of this paper are to find common plasma and magnetic properties of different ICME sub-structures and which ICME properties affect the flux of GCRs near Earth. Methods. We used a superposed epoch method applied to a large set of ICMEs observed in situ by the spacecraft ACE, between 1998 and 2006. We also applied a superposed epoch analysis on GCRs time series observed with the McMurdo neutron monitors. Results. We find that slow MCs at 1 AU have on average more massive sheaths. We conclude that this is because they are more effectively slowed down by drag during their travel from the Sun. Slow MCs also have a more symmetric magnetic field and sheaths expanding similarly as their following MC, while in contrast, fast MCs have an asymmetric magnetic profile and a sheath in compression. In all types of MCs, we find that the proton density and the temperature and the magnetic fluctuations can diffuse within the front of the MC due to 3D reconnection. Finally, we derive a quantitative model that describes the decrease in cosmic rays as a function of the amount of magnetic fluctuations and field strength. Conclusions. The obtained typical profiles of sheath, MC and GCR properties corresponding to slow, middle, and fast ICMEs, can be used for forecasting or modelling these events, and to better understand the transport of energetic particles in ICMEs. They are also useful for improving future operative space weather activities.
Fil: Masías Meza, Jimmy Joel. Universidad de Buenos Aires; Argentina
Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Démoulin, Pascal. Centre National de la Recherche Scientifique; Francia
Fil: Rodriguez L.. Royal Observatory Of Belgium; Bélgica
Fil: Janvier, M.. Universite de Paris 13-Nord; Francia
Materia
COSMIC RAYS
SOLAR WIND
SOLAR-TERRESTRIAL RELATIONS
SUN: CORONAL MASS EJECTIONS
SUN: HELIOSPHERE
SUN: MAGNETIC FIELDS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/76810

id CONICETDig_f739fb16947e6a1ebb91197789aa1dc0
oai_identifier_str oai:ri.conicet.gov.ar:11336/76810
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic raysMasías Meza, Jimmy JoelDasso, Sergio RicardoDémoulin, PascalRodriguez L.Janvier, M.COSMIC RAYSSOLAR WINDSOLAR-TERRESTRIAL RELATIONSSUN: CORONAL MASS EJECTIONSSUN: HELIOSPHERESUN: MAGNETIC FIELDShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. Interplanetary coronal mass ejections (ICMEs) are the interplanetary manifestations of solar eruptions. The overtaken solar wind forms a sheath of compressed plasma at the front of ICMEs. Magnetic clouds (MCs) are a subset of ICMEs with specific properties (e.g. the presence of a flux rope). When ICMEs pass near Earth, ground observations indicate that the flux of Galactic cosmic rays (GCRs) decreases. Aims. The main aims of this paper are to find common plasma and magnetic properties of different ICME sub-structures and which ICME properties affect the flux of GCRs near Earth. Methods. We used a superposed epoch method applied to a large set of ICMEs observed in situ by the spacecraft ACE, between 1998 and 2006. We also applied a superposed epoch analysis on GCRs time series observed with the McMurdo neutron monitors. Results. We find that slow MCs at 1 AU have on average more massive sheaths. We conclude that this is because they are more effectively slowed down by drag during their travel from the Sun. Slow MCs also have a more symmetric magnetic field and sheaths expanding similarly as their following MC, while in contrast, fast MCs have an asymmetric magnetic profile and a sheath in compression. In all types of MCs, we find that the proton density and the temperature and the magnetic fluctuations can diffuse within the front of the MC due to 3D reconnection. Finally, we derive a quantitative model that describes the decrease in cosmic rays as a function of the amount of magnetic fluctuations and field strength. Conclusions. The obtained typical profiles of sheath, MC and GCR properties corresponding to slow, middle, and fast ICMEs, can be used for forecasting or modelling these events, and to better understand the transport of energetic particles in ICMEs. They are also useful for improving future operative space weather activities.Fil: Masías Meza, Jimmy Joel. Universidad de Buenos Aires; ArgentinaFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Démoulin, Pascal. Centre National de la Recherche Scientifique; FranciaFil: Rodriguez L.. Royal Observatory Of Belgium; BélgicaFil: Janvier, M.. Universite de Paris 13-Nord; FranciaEDP Sciences2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76810Masías Meza, Jimmy Joel; Dasso, Sergio Ricardo; Démoulin, Pascal; Rodriguez L.; Janvier, M.; Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays; EDP Sciences; Astronomy and Astrophysics; 592; A118; 5-2016; 1-130004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201628571info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:55Zoai:ri.conicet.gov.ar:11336/76810instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:55.9CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays
title Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays
spellingShingle Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays
Masías Meza, Jimmy Joel
COSMIC RAYS
SOLAR WIND
SOLAR-TERRESTRIAL RELATIONS
SUN: CORONAL MASS EJECTIONS
SUN: HELIOSPHERE
SUN: MAGNETIC FIELDS
title_short Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays
title_full Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays
title_fullStr Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays
title_full_unstemmed Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays
title_sort Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays
dc.creator.none.fl_str_mv Masías Meza, Jimmy Joel
Dasso, Sergio Ricardo
Démoulin, Pascal
Rodriguez L.
Janvier, M.
author Masías Meza, Jimmy Joel
author_facet Masías Meza, Jimmy Joel
Dasso, Sergio Ricardo
Démoulin, Pascal
Rodriguez L.
Janvier, M.
author_role author
author2 Dasso, Sergio Ricardo
Démoulin, Pascal
Rodriguez L.
Janvier, M.
author2_role author
author
author
author
dc.subject.none.fl_str_mv COSMIC RAYS
SOLAR WIND
SOLAR-TERRESTRIAL RELATIONS
SUN: CORONAL MASS EJECTIONS
SUN: HELIOSPHERE
SUN: MAGNETIC FIELDS
topic COSMIC RAYS
SOLAR WIND
SOLAR-TERRESTRIAL RELATIONS
SUN: CORONAL MASS EJECTIONS
SUN: HELIOSPHERE
SUN: MAGNETIC FIELDS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Context. Interplanetary coronal mass ejections (ICMEs) are the interplanetary manifestations of solar eruptions. The overtaken solar wind forms a sheath of compressed plasma at the front of ICMEs. Magnetic clouds (MCs) are a subset of ICMEs with specific properties (e.g. the presence of a flux rope). When ICMEs pass near Earth, ground observations indicate that the flux of Galactic cosmic rays (GCRs) decreases. Aims. The main aims of this paper are to find common plasma and magnetic properties of different ICME sub-structures and which ICME properties affect the flux of GCRs near Earth. Methods. We used a superposed epoch method applied to a large set of ICMEs observed in situ by the spacecraft ACE, between 1998 and 2006. We also applied a superposed epoch analysis on GCRs time series observed with the McMurdo neutron monitors. Results. We find that slow MCs at 1 AU have on average more massive sheaths. We conclude that this is because they are more effectively slowed down by drag during their travel from the Sun. Slow MCs also have a more symmetric magnetic field and sheaths expanding similarly as their following MC, while in contrast, fast MCs have an asymmetric magnetic profile and a sheath in compression. In all types of MCs, we find that the proton density and the temperature and the magnetic fluctuations can diffuse within the front of the MC due to 3D reconnection. Finally, we derive a quantitative model that describes the decrease in cosmic rays as a function of the amount of magnetic fluctuations and field strength. Conclusions. The obtained typical profiles of sheath, MC and GCR properties corresponding to slow, middle, and fast ICMEs, can be used for forecasting or modelling these events, and to better understand the transport of energetic particles in ICMEs. They are also useful for improving future operative space weather activities.
Fil: Masías Meza, Jimmy Joel. Universidad de Buenos Aires; Argentina
Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Démoulin, Pascal. Centre National de la Recherche Scientifique; Francia
Fil: Rodriguez L.. Royal Observatory Of Belgium; Bélgica
Fil: Janvier, M.. Universite de Paris 13-Nord; Francia
description Context. Interplanetary coronal mass ejections (ICMEs) are the interplanetary manifestations of solar eruptions. The overtaken solar wind forms a sheath of compressed plasma at the front of ICMEs. Magnetic clouds (MCs) are a subset of ICMEs with specific properties (e.g. the presence of a flux rope). When ICMEs pass near Earth, ground observations indicate that the flux of Galactic cosmic rays (GCRs) decreases. Aims. The main aims of this paper are to find common plasma and magnetic properties of different ICME sub-structures and which ICME properties affect the flux of GCRs near Earth. Methods. We used a superposed epoch method applied to a large set of ICMEs observed in situ by the spacecraft ACE, between 1998 and 2006. We also applied a superposed epoch analysis on GCRs time series observed with the McMurdo neutron monitors. Results. We find that slow MCs at 1 AU have on average more massive sheaths. We conclude that this is because they are more effectively slowed down by drag during their travel from the Sun. Slow MCs also have a more symmetric magnetic field and sheaths expanding similarly as their following MC, while in contrast, fast MCs have an asymmetric magnetic profile and a sheath in compression. In all types of MCs, we find that the proton density and the temperature and the magnetic fluctuations can diffuse within the front of the MC due to 3D reconnection. Finally, we derive a quantitative model that describes the decrease in cosmic rays as a function of the amount of magnetic fluctuations and field strength. Conclusions. The obtained typical profiles of sheath, MC and GCR properties corresponding to slow, middle, and fast ICMEs, can be used for forecasting or modelling these events, and to better understand the transport of energetic particles in ICMEs. They are also useful for improving future operative space weather activities.
publishDate 2016
dc.date.none.fl_str_mv 2016-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/76810
Masías Meza, Jimmy Joel; Dasso, Sergio Ricardo; Démoulin, Pascal; Rodriguez L.; Janvier, M.; Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays; EDP Sciences; Astronomy and Astrophysics; 592; A118; 5-2016; 1-13
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/76810
identifier_str_mv Masías Meza, Jimmy Joel; Dasso, Sergio Ricardo; Démoulin, Pascal; Rodriguez L.; Janvier, M.; Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays; EDP Sciences; Astronomy and Astrophysics; 592; A118; 5-2016; 1-13
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201628571
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614451243778048
score 13.070432