An active inference approach to on-line agent monitoring in safety-critical systems
- Autores
- Martinez, Ernesto Carlos; Avila, Luis Omar
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The current trend towards integrating software agents in safety–critical systems such as drones, autonomous cars and medical devices, which must operate in uncertain environments, gives rise to the need of on-line detection of an unexpected behavior. In this work, on-line monitoring is carried out by comparing environmental state transitions with prior beliefs descriptive of optimal behavior. The agent policy is computed analytically using linearly solvable Markov decision processes. Active inference using prior beliefs allows a monitor proactively rehearsing on-line future agent actions over a rolling horizon so as to generate expectations to discover surprising behaviors. A Bayesian surprise metric is proposed based on twin Gaussian processes to measure the difference between prior and posterior beliefs about state transitions in the agent environment. Using a sliding window of sampled data, beliefs are updated a posteriori by comparing a sequence of state transitions with the ones predicted using the optimal policy. An artificial pancreas for diabetic patients is used as a representative example.
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina
Fil: Avila, Luis Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina - Materia
-
Active Inference
Bayesian Surprise
On-Line Monitoring
Twin Gaussian Processes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6890
Ver los metadatos del registro completo
id |
CONICETDig_6abb86a301631d08d9fbcfea13a25dcf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6890 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An active inference approach to on-line agent monitoring in safety-critical systemsMartinez, Ernesto CarlosAvila, Luis OmarActive InferenceBayesian SurpriseOn-Line MonitoringTwin Gaussian Processeshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The current trend towards integrating software agents in safety–critical systems such as drones, autonomous cars and medical devices, which must operate in uncertain environments, gives rise to the need of on-line detection of an unexpected behavior. In this work, on-line monitoring is carried out by comparing environmental state transitions with prior beliefs descriptive of optimal behavior. The agent policy is computed analytically using linearly solvable Markov decision processes. Active inference using prior beliefs allows a monitor proactively rehearsing on-line future agent actions over a rolling horizon so as to generate expectations to discover surprising behaviors. A Bayesian surprise metric is proposed based on twin Gaussian processes to measure the difference between prior and posterior beliefs about state transitions in the agent environment. Using a sliding window of sampled data, beliefs are updated a posteriori by comparing a sequence of state transitions with the ones predicted using the optimal policy. An artificial pancreas for diabetic patients is used as a representative example.Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); ArgentinaFil: Avila, Luis Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); ArgentinaElsevier2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6890Martinez, Ernesto Carlos; Avila, Luis Omar; An active inference approach to on-line agent monitoring in safety-critical systems; Elsevier; Advanced Engineering Informatics; 29; 4; 8-2015; 1083-10951474-0346enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1474034615000749info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aei.2015.07.008info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:17:34Zoai:ri.conicet.gov.ar:11336/6890instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:34.566CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An active inference approach to on-line agent monitoring in safety-critical systems |
title |
An active inference approach to on-line agent monitoring in safety-critical systems |
spellingShingle |
An active inference approach to on-line agent monitoring in safety-critical systems Martinez, Ernesto Carlos Active Inference Bayesian Surprise On-Line Monitoring Twin Gaussian Processes |
title_short |
An active inference approach to on-line agent monitoring in safety-critical systems |
title_full |
An active inference approach to on-line agent monitoring in safety-critical systems |
title_fullStr |
An active inference approach to on-line agent monitoring in safety-critical systems |
title_full_unstemmed |
An active inference approach to on-line agent monitoring in safety-critical systems |
title_sort |
An active inference approach to on-line agent monitoring in safety-critical systems |
dc.creator.none.fl_str_mv |
Martinez, Ernesto Carlos Avila, Luis Omar |
author |
Martinez, Ernesto Carlos |
author_facet |
Martinez, Ernesto Carlos Avila, Luis Omar |
author_role |
author |
author2 |
Avila, Luis Omar |
author2_role |
author |
dc.subject.none.fl_str_mv |
Active Inference Bayesian Surprise On-Line Monitoring Twin Gaussian Processes |
topic |
Active Inference Bayesian Surprise On-Line Monitoring Twin Gaussian Processes |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The current trend towards integrating software agents in safety–critical systems such as drones, autonomous cars and medical devices, which must operate in uncertain environments, gives rise to the need of on-line detection of an unexpected behavior. In this work, on-line monitoring is carried out by comparing environmental state transitions with prior beliefs descriptive of optimal behavior. The agent policy is computed analytically using linearly solvable Markov decision processes. Active inference using prior beliefs allows a monitor proactively rehearsing on-line future agent actions over a rolling horizon so as to generate expectations to discover surprising behaviors. A Bayesian surprise metric is proposed based on twin Gaussian processes to measure the difference between prior and posterior beliefs about state transitions in the agent environment. Using a sliding window of sampled data, beliefs are updated a posteriori by comparing a sequence of state transitions with the ones predicted using the optimal policy. An artificial pancreas for diabetic patients is used as a representative example. Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina Fil: Avila, Luis Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina |
description |
The current trend towards integrating software agents in safety–critical systems such as drones, autonomous cars and medical devices, which must operate in uncertain environments, gives rise to the need of on-line detection of an unexpected behavior. In this work, on-line monitoring is carried out by comparing environmental state transitions with prior beliefs descriptive of optimal behavior. The agent policy is computed analytically using linearly solvable Markov decision processes. Active inference using prior beliefs allows a monitor proactively rehearsing on-line future agent actions over a rolling horizon so as to generate expectations to discover surprising behaviors. A Bayesian surprise metric is proposed based on twin Gaussian processes to measure the difference between prior and posterior beliefs about state transitions in the agent environment. Using a sliding window of sampled data, beliefs are updated a posteriori by comparing a sequence of state transitions with the ones predicted using the optimal policy. An artificial pancreas for diabetic patients is used as a representative example. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6890 Martinez, Ernesto Carlos; Avila, Luis Omar; An active inference approach to on-line agent monitoring in safety-critical systems; Elsevier; Advanced Engineering Informatics; 29; 4; 8-2015; 1083-1095 1474-0346 |
url |
http://hdl.handle.net/11336/6890 |
identifier_str_mv |
Martinez, Ernesto Carlos; Avila, Luis Omar; An active inference approach to on-line agent monitoring in safety-critical systems; Elsevier; Advanced Engineering Informatics; 29; 4; 8-2015; 1083-1095 1474-0346 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1474034615000749 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aei.2015.07.008 info:eu-repo/semantics/altIdentifier/doi/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614129136959488 |
score |
13.070432 |