Proper splittings of Hilbert space operators
- Autores
- Fongi, Guillermina; Gonzalez, Maria Celeste
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Proper splittings of operators are commonly used to study the convergence of iterative processes. In order to approximate solutions of operator equations, in this article we deal with proper splittings of closed range bounded linear operators defined on Hilbert spaces. We study the convergence of general proper splittings of operators in the infinite dimensional context. We also propose some particular splittings for special classes of operators and we study different criteria of convergence and comparison for them. In some cases, these criteria are given under hypothesis of operator order relations. In addition, we relate these results with the concept of the symmetric approximation of a frame in a Hilbert space.
Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina - Materia
-
HILBERT SPACE OPERATORS
SPLITTINGS
ITERATIVE METHODS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/263366
Ver los metadatos del registro completo
id |
CONICETDig_699235e70189b1ed59e5a81fa86ce7ec |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/263366 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Proper splittings of Hilbert space operatorsFongi, GuillerminaGonzalez, Maria CelesteHILBERT SPACE OPERATORSSPLITTINGSITERATIVE METHODShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Proper splittings of operators are commonly used to study the convergence of iterative processes. In order to approximate solutions of operator equations, in this article we deal with proper splittings of closed range bounded linear operators defined on Hilbert spaces. We study the convergence of general proper splittings of operators in the infinite dimensional context. We also propose some particular splittings for special classes of operators and we study different criteria of convergence and comparison for them. In some cases, these criteria are given under hypothesis of operator order relations. In addition, we relate these results with the concept of the symmetric approximation of a frame in a Hilbert space.Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; ArgentinaAcademic Press Inc Elsevier Science2025-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263366Fongi, Guillermina; Gonzalez, Maria Celeste; Proper splittings of Hilbert space operators; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 545; 1; 5-2025; 1-190022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0022247X24010151info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2024.129093info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2403.10247info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:52Zoai:ri.conicet.gov.ar:11336/263366instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:52.994CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Proper splittings of Hilbert space operators |
title |
Proper splittings of Hilbert space operators |
spellingShingle |
Proper splittings of Hilbert space operators Fongi, Guillermina HILBERT SPACE OPERATORS SPLITTINGS ITERATIVE METHODS |
title_short |
Proper splittings of Hilbert space operators |
title_full |
Proper splittings of Hilbert space operators |
title_fullStr |
Proper splittings of Hilbert space operators |
title_full_unstemmed |
Proper splittings of Hilbert space operators |
title_sort |
Proper splittings of Hilbert space operators |
dc.creator.none.fl_str_mv |
Fongi, Guillermina Gonzalez, Maria Celeste |
author |
Fongi, Guillermina |
author_facet |
Fongi, Guillermina Gonzalez, Maria Celeste |
author_role |
author |
author2 |
Gonzalez, Maria Celeste |
author2_role |
author |
dc.subject.none.fl_str_mv |
HILBERT SPACE OPERATORS SPLITTINGS ITERATIVE METHODS |
topic |
HILBERT SPACE OPERATORS SPLITTINGS ITERATIVE METHODS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Proper splittings of operators are commonly used to study the convergence of iterative processes. In order to approximate solutions of operator equations, in this article we deal with proper splittings of closed range bounded linear operators defined on Hilbert spaces. We study the convergence of general proper splittings of operators in the infinite dimensional context. We also propose some particular splittings for special classes of operators and we study different criteria of convergence and comparison for them. In some cases, these criteria are given under hypothesis of operator order relations. In addition, we relate these results with the concept of the symmetric approximation of a frame in a Hilbert space. Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina |
description |
Proper splittings of operators are commonly used to study the convergence of iterative processes. In order to approximate solutions of operator equations, in this article we deal with proper splittings of closed range bounded linear operators defined on Hilbert spaces. We study the convergence of general proper splittings of operators in the infinite dimensional context. We also propose some particular splittings for special classes of operators and we study different criteria of convergence and comparison for them. In some cases, these criteria are given under hypothesis of operator order relations. In addition, we relate these results with the concept of the symmetric approximation of a frame in a Hilbert space. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/263366 Fongi, Guillermina; Gonzalez, Maria Celeste; Proper splittings of Hilbert space operators; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 545; 1; 5-2025; 1-19 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/263366 |
identifier_str_mv |
Fongi, Guillermina; Gonzalez, Maria Celeste; Proper splittings of Hilbert space operators; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 545; 1; 5-2025; 1-19 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0022247X24010151 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2024.129093 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2403.10247 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614234926743552 |
score |
13.069144 |