Finite quantum groups and quantum permutation groups
- Autores
- Banica, Teodor; Bichon, Julien; Natale, Sonia Lujan
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give examples of finite quantum permutation groups which arise from the twisting construction or as bicrossed products associated to exact factorizations in finite groups. We also give examples of finite quantum groups which are not quantum permutation groups: one such example occurs as a split abelian extension associated to the exact factorization S_4 = Z_4 S_3 and has dimension 24. We show that, in fact, this is the smallest possible dimension that a non quantum permutation group can have.
Fil: Banica, Teodor. No especifíca;
Fil: Bichon, Julien. No especifíca;
Fil: Natale, Sonia Lujan. Université de Cergy; Francia. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Universite Blaise Pascal; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
semisimple Hopf algebra
quantum permutation group - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/269401
Ver los metadatos del registro completo
| id |
CONICETDig_6989b304a3073654544c79b7ee9ddcb5 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/269401 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Finite quantum groups and quantum permutation groupsBanica, TeodorBichon, JulienNatale, Sonia Lujansemisimple Hopf algebraquantum permutation grouphttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We give examples of finite quantum permutation groups which arise from the twisting construction or as bicrossed products associated to exact factorizations in finite groups. We also give examples of finite quantum groups which are not quantum permutation groups: one such example occurs as a split abelian extension associated to the exact factorization S_4 = Z_4 S_3 and has dimension 24. We show that, in fact, this is the smallest possible dimension that a non quantum permutation group can have.Fil: Banica, Teodor. No especifíca;Fil: Bichon, Julien. No especifíca;Fil: Natale, Sonia Lujan. Université de Cergy; Francia. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Universite Blaise Pascal; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAcademic Press Inc Elsevier Science2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/269401Banica, Teodor; Bichon, Julien; Natale, Sonia Lujan; Finite quantum groups and quantum permutation groups; Academic Press Inc Elsevier Science; Advances in Mathematics; 229; 3-2012; 3320-33380001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1104.1400v1info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.1104.1400info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:16:19Zoai:ri.conicet.gov.ar:11336/269401instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:16:20.293CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Finite quantum groups and quantum permutation groups |
| title |
Finite quantum groups and quantum permutation groups |
| spellingShingle |
Finite quantum groups and quantum permutation groups Banica, Teodor semisimple Hopf algebra quantum permutation group |
| title_short |
Finite quantum groups and quantum permutation groups |
| title_full |
Finite quantum groups and quantum permutation groups |
| title_fullStr |
Finite quantum groups and quantum permutation groups |
| title_full_unstemmed |
Finite quantum groups and quantum permutation groups |
| title_sort |
Finite quantum groups and quantum permutation groups |
| dc.creator.none.fl_str_mv |
Banica, Teodor Bichon, Julien Natale, Sonia Lujan |
| author |
Banica, Teodor |
| author_facet |
Banica, Teodor Bichon, Julien Natale, Sonia Lujan |
| author_role |
author |
| author2 |
Bichon, Julien Natale, Sonia Lujan |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
semisimple Hopf algebra quantum permutation group |
| topic |
semisimple Hopf algebra quantum permutation group |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We give examples of finite quantum permutation groups which arise from the twisting construction or as bicrossed products associated to exact factorizations in finite groups. We also give examples of finite quantum groups which are not quantum permutation groups: one such example occurs as a split abelian extension associated to the exact factorization S_4 = Z_4 S_3 and has dimension 24. We show that, in fact, this is the smallest possible dimension that a non quantum permutation group can have. Fil: Banica, Teodor. No especifíca; Fil: Bichon, Julien. No especifíca; Fil: Natale, Sonia Lujan. Université de Cergy; Francia. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Universite Blaise Pascal; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
We give examples of finite quantum permutation groups which arise from the twisting construction or as bicrossed products associated to exact factorizations in finite groups. We also give examples of finite quantum groups which are not quantum permutation groups: one such example occurs as a split abelian extension associated to the exact factorization S_4 = Z_4 S_3 and has dimension 24. We show that, in fact, this is the smallest possible dimension that a non quantum permutation group can have. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/269401 Banica, Teodor; Bichon, Julien; Natale, Sonia Lujan; Finite quantum groups and quantum permutation groups; Academic Press Inc Elsevier Science; Advances in Mathematics; 229; 3-2012; 3320-3338 0001-8708 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/269401 |
| identifier_str_mv |
Banica, Teodor; Bichon, Julien; Natale, Sonia Lujan; Finite quantum groups and quantum permutation groups; Academic Press Inc Elsevier Science; Advances in Mathematics; 229; 3-2012; 3320-3338 0001-8708 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1104.1400v1 info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.1104.1400 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781610588897280 |
| score |
12.982451 |