A novel recycling route for spent li-ion batteries
- Autores
- Pinna, Eliana Guadalupe; Toro, Norman; Gallegos, Sandra; Rodriguez, Mario Humberto
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, a recycling route for spent Li-ion batteries (LIBs) was developed. For this, the recovery of the metal content in both electrodes (anode and cathode) was investigated. Based on these results, an economic analysis of this recycling process was carried out. The obtained results showed that more than 90% of the material contained in both electrodes was recycled. The dissolution with acetic acid of the metals present in the active cathodic material is thermodynamically viable and the addition of a reducing agent such as hydrogen peroxide improved the spontaneity of the reaction. Dissolutions close to 100% for Li and Co were obtained. In addition, it was determined that the synthesis of lithium and cobalt valuable compounds was viable from the leach liquor, recovering approximately 90% of Co as cobalt oxalate, and 92% of Li as lithium carbonate. Furthermore, carbon graphite and Cu were fully recovered (100%) from the anodes. Finally, the results of the economic analysis showed that the recovered products have a high commercial value and industrial interest, providing an environmentally and economically viable process.
Fil: Pinna, Eliana Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Fil: Toro, Norman. Universidad Arturo Prat; Chile
Fil: Gallegos, Sandra. Universidad Arturo Prat; Chile
Fil: Rodriguez, Mario Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina - Materia
-
ECONOMICAL
LIBS
RECYCLING
THERMOCHEMICAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/173300
Ver los metadatos del registro completo
id |
CONICETDig_69731c895203fd86f75b9b14fb8751aa |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/173300 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A novel recycling route for spent li-ion batteriesPinna, Eliana GuadalupeToro, NormanGallegos, SandraRodriguez, Mario HumbertoECONOMICALLIBSRECYCLINGTHERMOCHEMICALhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In this work, a recycling route for spent Li-ion batteries (LIBs) was developed. For this, the recovery of the metal content in both electrodes (anode and cathode) was investigated. Based on these results, an economic analysis of this recycling process was carried out. The obtained results showed that more than 90% of the material contained in both electrodes was recycled. The dissolution with acetic acid of the metals present in the active cathodic material is thermodynamically viable and the addition of a reducing agent such as hydrogen peroxide improved the spontaneity of the reaction. Dissolutions close to 100% for Li and Co were obtained. In addition, it was determined that the synthesis of lithium and cobalt valuable compounds was viable from the leach liquor, recovering approximately 90% of Co as cobalt oxalate, and 92% of Li as lithium carbonate. Furthermore, carbon graphite and Cu were fully recovered (100%) from the anodes. Finally, the results of the economic analysis showed that the recovered products have a high commercial value and industrial interest, providing an environmentally and economically viable process.Fil: Pinna, Eliana Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: Toro, Norman. Universidad Arturo Prat; ChileFil: Gallegos, Sandra. Universidad Arturo Prat; ChileFil: Rodriguez, Mario Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaMultidisciplinary Digital Publishing Institute2022-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/173300Pinna, Eliana Guadalupe; Toro, Norman; Gallegos, Sandra; Rodriguez, Mario Humberto; A novel recycling route for spent li-ion batteries; Multidisciplinary Digital Publishing Institute; Materials; 15; 1; 1-2022; 1-131996-1944CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1944/15/1/44info:eu-repo/semantics/altIdentifier/doi/10.3390/ma15010044info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:58Zoai:ri.conicet.gov.ar:11336/173300instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:58.537CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A novel recycling route for spent li-ion batteries |
title |
A novel recycling route for spent li-ion batteries |
spellingShingle |
A novel recycling route for spent li-ion batteries Pinna, Eliana Guadalupe ECONOMICAL LIBS RECYCLING THERMOCHEMICAL |
title_short |
A novel recycling route for spent li-ion batteries |
title_full |
A novel recycling route for spent li-ion batteries |
title_fullStr |
A novel recycling route for spent li-ion batteries |
title_full_unstemmed |
A novel recycling route for spent li-ion batteries |
title_sort |
A novel recycling route for spent li-ion batteries |
dc.creator.none.fl_str_mv |
Pinna, Eliana Guadalupe Toro, Norman Gallegos, Sandra Rodriguez, Mario Humberto |
author |
Pinna, Eliana Guadalupe |
author_facet |
Pinna, Eliana Guadalupe Toro, Norman Gallegos, Sandra Rodriguez, Mario Humberto |
author_role |
author |
author2 |
Toro, Norman Gallegos, Sandra Rodriguez, Mario Humberto |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ECONOMICAL LIBS RECYCLING THERMOCHEMICAL |
topic |
ECONOMICAL LIBS RECYCLING THERMOCHEMICAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work, a recycling route for spent Li-ion batteries (LIBs) was developed. For this, the recovery of the metal content in both electrodes (anode and cathode) was investigated. Based on these results, an economic analysis of this recycling process was carried out. The obtained results showed that more than 90% of the material contained in both electrodes was recycled. The dissolution with acetic acid of the metals present in the active cathodic material is thermodynamically viable and the addition of a reducing agent such as hydrogen peroxide improved the spontaneity of the reaction. Dissolutions close to 100% for Li and Co were obtained. In addition, it was determined that the synthesis of lithium and cobalt valuable compounds was viable from the leach liquor, recovering approximately 90% of Co as cobalt oxalate, and 92% of Li as lithium carbonate. Furthermore, carbon graphite and Cu were fully recovered (100%) from the anodes. Finally, the results of the economic analysis showed that the recovered products have a high commercial value and industrial interest, providing an environmentally and economically viable process. Fil: Pinna, Eliana Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina Fil: Toro, Norman. Universidad Arturo Prat; Chile Fil: Gallegos, Sandra. Universidad Arturo Prat; Chile Fil: Rodriguez, Mario Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina |
description |
In this work, a recycling route for spent Li-ion batteries (LIBs) was developed. For this, the recovery of the metal content in both electrodes (anode and cathode) was investigated. Based on these results, an economic analysis of this recycling process was carried out. The obtained results showed that more than 90% of the material contained in both electrodes was recycled. The dissolution with acetic acid of the metals present in the active cathodic material is thermodynamically viable and the addition of a reducing agent such as hydrogen peroxide improved the spontaneity of the reaction. Dissolutions close to 100% for Li and Co were obtained. In addition, it was determined that the synthesis of lithium and cobalt valuable compounds was viable from the leach liquor, recovering approximately 90% of Co as cobalt oxalate, and 92% of Li as lithium carbonate. Furthermore, carbon graphite and Cu were fully recovered (100%) from the anodes. Finally, the results of the economic analysis showed that the recovered products have a high commercial value and industrial interest, providing an environmentally and economically viable process. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/173300 Pinna, Eliana Guadalupe; Toro, Norman; Gallegos, Sandra; Rodriguez, Mario Humberto; A novel recycling route for spent li-ion batteries; Multidisciplinary Digital Publishing Institute; Materials; 15; 1; 1-2022; 1-13 1996-1944 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/173300 |
identifier_str_mv |
Pinna, Eliana Guadalupe; Toro, Norman; Gallegos, Sandra; Rodriguez, Mario Humberto; A novel recycling route for spent li-ion batteries; Multidisciplinary Digital Publishing Institute; Materials; 15; 1; 1-2022; 1-13 1996-1944 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1944/15/1/44 info:eu-repo/semantics/altIdentifier/doi/10.3390/ma15010044 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613162722131968 |
score |
13.070432 |