Reconstructed Jing River streamflow from western China: A 399-year perspective for hydrological changes in the Loess Plateau
- Autores
- Zhao, Xiaoen; Fang, Keyan; Chen, Feng; Hadad, Martín Ariel; Roig Junent, Fidel Alejandro
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Jing River is a secondary tributary of the Yellow River, which flows through the middle of the Loess Plateau in China. Severe water scarcity and soil erosion in the basin have threatened sustainable social and economic development. To assess and solve the region's water resource problems, it is important to understand its historical hydrological climate change. Accordingly, we used five machine learning models and simple linear regression to reconstruct the January-June streamflow of the Jing River based on the tree ring width of Pinus tabulaeformis and Pinus armandii. By combining six models into an ensemble streamflow reconstruction, we obtained a more accurate reconstruction and streamflow variability information than with a single model. Over the past nearly four centuries, the Jing River has experienced seven high streamflow periods and ten low streamflow periods. The main atmospheric forcing factors driving the streamflow variability are the Pacific Decadal Oscillation and the El Niño-Southern Oscillation, which regulate the climate and hydrology of the region by affecting water vapor fluxes and the Asian monsoon. The different climate scenarios revealed the continued reduction in the future Jing River streamflow and a worsening water resource situation. This new streamflow reconstruction can serve as a valuable reference for analyzing regional hydrology and informing water resource management and policy formulations.
Fil: Zhao, Xiaoen. Yunnan University; China
Fil: Fang, Keyan. Fujian Normal University; China
Fil: Chen, Feng. Yunnan University; China
Fil: Hadad, Martín Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina
Fil: Roig Junent, Fidel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina - Materia
-
JING RIVER
MACHINE LEARNING
STREAMFLOW RECONSTRUCTION
TREE RINGS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/227413
Ver los metadatos del registro completo
id |
CONICETDig_66bfe646c2135b38d1750ff5214eb0e4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/227413 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Reconstructed Jing River streamflow from western China: A 399-year perspective for hydrological changes in the Loess PlateauZhao, XiaoenFang, KeyanChen, FengHadad, Martín ArielRoig Junent, Fidel AlejandroJING RIVERMACHINE LEARNINGSTREAMFLOW RECONSTRUCTIONTREE RINGShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The Jing River is a secondary tributary of the Yellow River, which flows through the middle of the Loess Plateau in China. Severe water scarcity and soil erosion in the basin have threatened sustainable social and economic development. To assess and solve the region's water resource problems, it is important to understand its historical hydrological climate change. Accordingly, we used five machine learning models and simple linear regression to reconstruct the January-June streamflow of the Jing River based on the tree ring width of Pinus tabulaeformis and Pinus armandii. By combining six models into an ensemble streamflow reconstruction, we obtained a more accurate reconstruction and streamflow variability information than with a single model. Over the past nearly four centuries, the Jing River has experienced seven high streamflow periods and ten low streamflow periods. The main atmospheric forcing factors driving the streamflow variability are the Pacific Decadal Oscillation and the El Niño-Southern Oscillation, which regulate the climate and hydrology of the region by affecting water vapor fluxes and the Asian monsoon. The different climate scenarios revealed the continued reduction in the future Jing River streamflow and a worsening water resource situation. This new streamflow reconstruction can serve as a valuable reference for analyzing regional hydrology and informing water resource management and policy formulations.Fil: Zhao, Xiaoen. Yunnan University; ChinaFil: Fang, Keyan. Fujian Normal University; ChinaFil: Chen, Feng. Yunnan University; ChinaFil: Hadad, Martín Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Roig Junent, Fidel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaElsevier Science2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/227413Zhao, Xiaoen; Fang, Keyan; Chen, Feng; Hadad, Martín Ariel; Roig Junent, Fidel Alejandro; Reconstructed Jing River streamflow from western China: A 399-year perspective for hydrological changes in the Loess Plateau; Elsevier Science; Journal of Hydrology; 621; 4-2023; 1-400022-1694CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jhydrol.2023.129573info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:17:24Zoai:ri.conicet.gov.ar:11336/227413instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:25.271CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Reconstructed Jing River streamflow from western China: A 399-year perspective for hydrological changes in the Loess Plateau |
title |
Reconstructed Jing River streamflow from western China: A 399-year perspective for hydrological changes in the Loess Plateau |
spellingShingle |
Reconstructed Jing River streamflow from western China: A 399-year perspective for hydrological changes in the Loess Plateau Zhao, Xiaoen JING RIVER MACHINE LEARNING STREAMFLOW RECONSTRUCTION TREE RINGS |
title_short |
Reconstructed Jing River streamflow from western China: A 399-year perspective for hydrological changes in the Loess Plateau |
title_full |
Reconstructed Jing River streamflow from western China: A 399-year perspective for hydrological changes in the Loess Plateau |
title_fullStr |
Reconstructed Jing River streamflow from western China: A 399-year perspective for hydrological changes in the Loess Plateau |
title_full_unstemmed |
Reconstructed Jing River streamflow from western China: A 399-year perspective for hydrological changes in the Loess Plateau |
title_sort |
Reconstructed Jing River streamflow from western China: A 399-year perspective for hydrological changes in the Loess Plateau |
dc.creator.none.fl_str_mv |
Zhao, Xiaoen Fang, Keyan Chen, Feng Hadad, Martín Ariel Roig Junent, Fidel Alejandro |
author |
Zhao, Xiaoen |
author_facet |
Zhao, Xiaoen Fang, Keyan Chen, Feng Hadad, Martín Ariel Roig Junent, Fidel Alejandro |
author_role |
author |
author2 |
Fang, Keyan Chen, Feng Hadad, Martín Ariel Roig Junent, Fidel Alejandro |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
JING RIVER MACHINE LEARNING STREAMFLOW RECONSTRUCTION TREE RINGS |
topic |
JING RIVER MACHINE LEARNING STREAMFLOW RECONSTRUCTION TREE RINGS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Jing River is a secondary tributary of the Yellow River, which flows through the middle of the Loess Plateau in China. Severe water scarcity and soil erosion in the basin have threatened sustainable social and economic development. To assess and solve the region's water resource problems, it is important to understand its historical hydrological climate change. Accordingly, we used five machine learning models and simple linear regression to reconstruct the January-June streamflow of the Jing River based on the tree ring width of Pinus tabulaeformis and Pinus armandii. By combining six models into an ensemble streamflow reconstruction, we obtained a more accurate reconstruction and streamflow variability information than with a single model. Over the past nearly four centuries, the Jing River has experienced seven high streamflow periods and ten low streamflow periods. The main atmospheric forcing factors driving the streamflow variability are the Pacific Decadal Oscillation and the El Niño-Southern Oscillation, which regulate the climate and hydrology of the region by affecting water vapor fluxes and the Asian monsoon. The different climate scenarios revealed the continued reduction in the future Jing River streamflow and a worsening water resource situation. This new streamflow reconstruction can serve as a valuable reference for analyzing regional hydrology and informing water resource management and policy formulations. Fil: Zhao, Xiaoen. Yunnan University; China Fil: Fang, Keyan. Fujian Normal University; China Fil: Chen, Feng. Yunnan University; China Fil: Hadad, Martín Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina Fil: Roig Junent, Fidel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina |
description |
The Jing River is a secondary tributary of the Yellow River, which flows through the middle of the Loess Plateau in China. Severe water scarcity and soil erosion in the basin have threatened sustainable social and economic development. To assess and solve the region's water resource problems, it is important to understand its historical hydrological climate change. Accordingly, we used five machine learning models and simple linear regression to reconstruct the January-June streamflow of the Jing River based on the tree ring width of Pinus tabulaeformis and Pinus armandii. By combining six models into an ensemble streamflow reconstruction, we obtained a more accurate reconstruction and streamflow variability information than with a single model. Over the past nearly four centuries, the Jing River has experienced seven high streamflow periods and ten low streamflow periods. The main atmospheric forcing factors driving the streamflow variability are the Pacific Decadal Oscillation and the El Niño-Southern Oscillation, which regulate the climate and hydrology of the region by affecting water vapor fluxes and the Asian monsoon. The different climate scenarios revealed the continued reduction in the future Jing River streamflow and a worsening water resource situation. This new streamflow reconstruction can serve as a valuable reference for analyzing regional hydrology and informing water resource management and policy formulations. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/227413 Zhao, Xiaoen; Fang, Keyan; Chen, Feng; Hadad, Martín Ariel; Roig Junent, Fidel Alejandro; Reconstructed Jing River streamflow from western China: A 399-year perspective for hydrological changes in the Loess Plateau; Elsevier Science; Journal of Hydrology; 621; 4-2023; 1-40 0022-1694 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/227413 |
identifier_str_mv |
Zhao, Xiaoen; Fang, Keyan; Chen, Feng; Hadad, Martín Ariel; Roig Junent, Fidel Alejandro; Reconstructed Jing River streamflow from western China: A 399-year perspective for hydrological changes in the Loess Plateau; Elsevier Science; Journal of Hydrology; 621; 4-2023; 1-40 0022-1694 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jhydrol.2023.129573 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614127265251328 |
score |
13.070432 |