Signatures of quantum chaos transition in short spin chains
- Autores
- Fortes, Emiliano M.; García Mata, Ignacio; Jalabert, Rodolfo; Wisniacki, Diego Ariel
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The non-integrability of quantum systems, often associated with chaotic behavior, is a concept typically applied to cases with a high-dimensional Hilbert space. Among different indicators signaling this behavior, the study of the long-time oscillations of the Out-of-Time Ordered Correlator (OTOC) appears as a versatile tool, that can be adapted to the case of systems with a small number of degrees of freedom. Using such an approach, we consider the oscillations observed after the scrambling time in the measurement of OTOCs of local operators for an Ising spin chain on a nuclear magnetic resonance quantum simulator (Li J. et al., Phys. Rev. X, 7 (2017) 031011). We show that the systematic of the OTOC oscillations describes qualitatively well, in a chain with only 4 spins, the integrability-to-chaos transition inherited from the infinite chain.
Fil: Fortes, Emiliano M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: García Mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Jalabert, Rodolfo. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
QUANTUM
CHAOS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/146941
Ver los metadatos del registro completo
id |
CONICETDig_ac9c4c2ae916c9b2156041a31462ede2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/146941 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Signatures of quantum chaos transition in short spin chainsFortes, Emiliano M.García Mata, IgnacioJalabert, RodolfoWisniacki, Diego ArielQUANTUMCHAOShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The non-integrability of quantum systems, often associated with chaotic behavior, is a concept typically applied to cases with a high-dimensional Hilbert space. Among different indicators signaling this behavior, the study of the long-time oscillations of the Out-of-Time Ordered Correlator (OTOC) appears as a versatile tool, that can be adapted to the case of systems with a small number of degrees of freedom. Using such an approach, we consider the oscillations observed after the scrambling time in the measurement of OTOCs of local operators for an Ising spin chain on a nuclear magnetic resonance quantum simulator (Li J. et al., Phys. Rev. X, 7 (2017) 031011). We show that the systematic of the OTOC oscillations describes qualitatively well, in a chain with only 4 spins, the integrability-to-chaos transition inherited from the infinite chain.Fil: Fortes, Emiliano M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: García Mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Jalabert, Rodolfo. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaEurophysics Letters2020-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146941Fortes, Emiliano M.; García Mata, Ignacio; Jalabert, Rodolfo; Wisniacki, Diego Ariel; Signatures of quantum chaos transition in short spin chains; Europhysics Letters; Europhysics Letters; 130; 6; 6-2020; 1-90295-5075CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1209/0295-5075/130/60001info:eu-repo/semantics/altIdentifier/doi/10.1209/0295-5075/130/60001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:21Zoai:ri.conicet.gov.ar:11336/146941instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:21.666CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Signatures of quantum chaos transition in short spin chains |
title |
Signatures of quantum chaos transition in short spin chains |
spellingShingle |
Signatures of quantum chaos transition in short spin chains Fortes, Emiliano M. QUANTUM CHAOS |
title_short |
Signatures of quantum chaos transition in short spin chains |
title_full |
Signatures of quantum chaos transition in short spin chains |
title_fullStr |
Signatures of quantum chaos transition in short spin chains |
title_full_unstemmed |
Signatures of quantum chaos transition in short spin chains |
title_sort |
Signatures of quantum chaos transition in short spin chains |
dc.creator.none.fl_str_mv |
Fortes, Emiliano M. García Mata, Ignacio Jalabert, Rodolfo Wisniacki, Diego Ariel |
author |
Fortes, Emiliano M. |
author_facet |
Fortes, Emiliano M. García Mata, Ignacio Jalabert, Rodolfo Wisniacki, Diego Ariel |
author_role |
author |
author2 |
García Mata, Ignacio Jalabert, Rodolfo Wisniacki, Diego Ariel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
QUANTUM CHAOS |
topic |
QUANTUM CHAOS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The non-integrability of quantum systems, often associated with chaotic behavior, is a concept typically applied to cases with a high-dimensional Hilbert space. Among different indicators signaling this behavior, the study of the long-time oscillations of the Out-of-Time Ordered Correlator (OTOC) appears as a versatile tool, that can be adapted to the case of systems with a small number of degrees of freedom. Using such an approach, we consider the oscillations observed after the scrambling time in the measurement of OTOCs of local operators for an Ising spin chain on a nuclear magnetic resonance quantum simulator (Li J. et al., Phys. Rev. X, 7 (2017) 031011). We show that the systematic of the OTOC oscillations describes qualitatively well, in a chain with only 4 spins, the integrability-to-chaos transition inherited from the infinite chain. Fil: Fortes, Emiliano M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: García Mata, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina Fil: Jalabert, Rodolfo. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; Francia Fil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
The non-integrability of quantum systems, often associated with chaotic behavior, is a concept typically applied to cases with a high-dimensional Hilbert space. Among different indicators signaling this behavior, the study of the long-time oscillations of the Out-of-Time Ordered Correlator (OTOC) appears as a versatile tool, that can be adapted to the case of systems with a small number of degrees of freedom. Using such an approach, we consider the oscillations observed after the scrambling time in the measurement of OTOCs of local operators for an Ising spin chain on a nuclear magnetic resonance quantum simulator (Li J. et al., Phys. Rev. X, 7 (2017) 031011). We show that the systematic of the OTOC oscillations describes qualitatively well, in a chain with only 4 spins, the integrability-to-chaos transition inherited from the infinite chain. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/146941 Fortes, Emiliano M.; García Mata, Ignacio; Jalabert, Rodolfo; Wisniacki, Diego Ariel; Signatures of quantum chaos transition in short spin chains; Europhysics Letters; Europhysics Letters; 130; 6; 6-2020; 1-9 0295-5075 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/146941 |
identifier_str_mv |
Fortes, Emiliano M.; García Mata, Ignacio; Jalabert, Rodolfo; Wisniacki, Diego Ariel; Signatures of quantum chaos transition in short spin chains; Europhysics Letters; Europhysics Letters; 130; 6; 6-2020; 1-9 0295-5075 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1209/0295-5075/130/60001 info:eu-repo/semantics/altIdentifier/doi/10.1209/0295-5075/130/60001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Europhysics Letters |
publisher.none.fl_str_mv |
Europhysics Letters |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613396137246720 |
score |
13.070432 |