Analytical Linearization of Aerodynamic Loads in Unsteady Vortex-Lattice Method for Nonlinear Aeroelastic Applications

Autores
Hente, Christian; Roccia, Bruno Antonio; Rolfes, Raimund; Gebhardt, Cristian Guillermo
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper presents the analytical linearization of aerodynamic loads (computed with the unsteady vortex-lattice method), which is formulated as tangent matrices with respect to the kinematic states of the aerodynamic grid. The loads and their linearization are then mapped to a nonlinear structural model by means of radial-basis functions, allowing for a two-way strong interaction scheme. The structural model comprises geometrically exact beams formulated in a director-based total Lagrangian description, circumventing the need for rotational degrees of freedom. The structural model is spatially discretized into finite elements and temporally discretized with the help of an implicit scheme that identically preserves momenta and energy. The resulting nonlinear discrete equations are solved by applying Newton’s method, requiring calculating the Jacobians of the whole aeroelastic system. The correctness of the linearized loads is then shown by direct comparison with their numerical counterparts. In addition, we employ our strongly coupled aeroelastic model to investigate the nonlinear static and dynamic behavior of a suspension bridge. With this approach, we successfully investigate the numerical features of the aeroelastic system under divergence and flutter conditions.
Fil: Hente, Christian. Leibniz Universitat Hannover.; Alemania
Fil: Roccia, Bruno Antonio. University Of Bergen. Faculty Of Mathematics And Natural Sciencies; Noruega. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Fil: Rolfes, Raimund. Leibniz Universitat Hannover.; Alemania
Fil: Gebhardt, Cristian Guillermo. University Of Bergen. Faculty Of Mathematics And Natural Sciencies; Noruega. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Linearization
UVLM
Aeroelasticity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/278692

id CONICETDig_66576f2645af0fe08471cd279ebfc842
oai_identifier_str oai:ri.conicet.gov.ar:11336/278692
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Analytical Linearization of Aerodynamic Loads in Unsteady Vortex-Lattice Method for Nonlinear Aeroelastic ApplicationsHente, ChristianRoccia, Bruno AntonioRolfes, RaimundGebhardt, Cristian GuillermoLinearizationUVLMAeroelasticityhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2This paper presents the analytical linearization of aerodynamic loads (computed with the unsteady vortex-lattice method), which is formulated as tangent matrices with respect to the kinematic states of the aerodynamic grid. The loads and their linearization are then mapped to a nonlinear structural model by means of radial-basis functions, allowing for a two-way strong interaction scheme. The structural model comprises geometrically exact beams formulated in a director-based total Lagrangian description, circumventing the need for rotational degrees of freedom. The structural model is spatially discretized into finite elements and temporally discretized with the help of an implicit scheme that identically preserves momenta and energy. The resulting nonlinear discrete equations are solved by applying Newton’s method, requiring calculating the Jacobians of the whole aeroelastic system. The correctness of the linearized loads is then shown by direct comparison with their numerical counterparts. In addition, we employ our strongly coupled aeroelastic model to investigate the nonlinear static and dynamic behavior of a suspension bridge. With this approach, we successfully investigate the numerical features of the aeroelastic system under divergence and flutter conditions.Fil: Hente, Christian. Leibniz Universitat Hannover.; AlemaniaFil: Roccia, Bruno Antonio. University Of Bergen. Faculty Of Mathematics And Natural Sciencies; Noruega. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: Rolfes, Raimund. Leibniz Universitat Hannover.; AlemaniaFil: Gebhardt, Cristian Guillermo. University Of Bergen. Faculty Of Mathematics And Natural Sciencies; Noruega. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmer Inst Aeronaut Astronaut2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/278692Hente, Christian; Roccia, Bruno Antonio; Rolfes, Raimund; Gebhardt, Cristian Guillermo; Analytical Linearization of Aerodynamic Loads in Unsteady Vortex-Lattice Method for Nonlinear Aeroelastic Applications; Amer Inst Aeronaut Astronaut; Aiaa - American Institute Of Aeronautics And Astronautics; 62; 10; 10-2024; 3857-38800001-1452CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arc.aiaa.org/doi/10.2514/1.J063693info:eu-repo/semantics/altIdentifier/doi/10.2514/1.J063693info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-14T12:21:06Zoai:ri.conicet.gov.ar:11336/278692instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-14 12:21:06.536CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Analytical Linearization of Aerodynamic Loads in Unsteady Vortex-Lattice Method for Nonlinear Aeroelastic Applications
title Analytical Linearization of Aerodynamic Loads in Unsteady Vortex-Lattice Method for Nonlinear Aeroelastic Applications
spellingShingle Analytical Linearization of Aerodynamic Loads in Unsteady Vortex-Lattice Method for Nonlinear Aeroelastic Applications
Hente, Christian
Linearization
UVLM
Aeroelasticity
title_short Analytical Linearization of Aerodynamic Loads in Unsteady Vortex-Lattice Method for Nonlinear Aeroelastic Applications
title_full Analytical Linearization of Aerodynamic Loads in Unsteady Vortex-Lattice Method for Nonlinear Aeroelastic Applications
title_fullStr Analytical Linearization of Aerodynamic Loads in Unsteady Vortex-Lattice Method for Nonlinear Aeroelastic Applications
title_full_unstemmed Analytical Linearization of Aerodynamic Loads in Unsteady Vortex-Lattice Method for Nonlinear Aeroelastic Applications
title_sort Analytical Linearization of Aerodynamic Loads in Unsteady Vortex-Lattice Method for Nonlinear Aeroelastic Applications
dc.creator.none.fl_str_mv Hente, Christian
Roccia, Bruno Antonio
Rolfes, Raimund
Gebhardt, Cristian Guillermo
author Hente, Christian
author_facet Hente, Christian
Roccia, Bruno Antonio
Rolfes, Raimund
Gebhardt, Cristian Guillermo
author_role author
author2 Roccia, Bruno Antonio
Rolfes, Raimund
Gebhardt, Cristian Guillermo
author2_role author
author
author
dc.subject.none.fl_str_mv Linearization
UVLM
Aeroelasticity
topic Linearization
UVLM
Aeroelasticity
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This paper presents the analytical linearization of aerodynamic loads (computed with the unsteady vortex-lattice method), which is formulated as tangent matrices with respect to the kinematic states of the aerodynamic grid. The loads and their linearization are then mapped to a nonlinear structural model by means of radial-basis functions, allowing for a two-way strong interaction scheme. The structural model comprises geometrically exact beams formulated in a director-based total Lagrangian description, circumventing the need for rotational degrees of freedom. The structural model is spatially discretized into finite elements and temporally discretized with the help of an implicit scheme that identically preserves momenta and energy. The resulting nonlinear discrete equations are solved by applying Newton’s method, requiring calculating the Jacobians of the whole aeroelastic system. The correctness of the linearized loads is then shown by direct comparison with their numerical counterparts. In addition, we employ our strongly coupled aeroelastic model to investigate the nonlinear static and dynamic behavior of a suspension bridge. With this approach, we successfully investigate the numerical features of the aeroelastic system under divergence and flutter conditions.
Fil: Hente, Christian. Leibniz Universitat Hannover.; Alemania
Fil: Roccia, Bruno Antonio. University Of Bergen. Faculty Of Mathematics And Natural Sciencies; Noruega. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Fil: Rolfes, Raimund. Leibniz Universitat Hannover.; Alemania
Fil: Gebhardt, Cristian Guillermo. University Of Bergen. Faculty Of Mathematics And Natural Sciencies; Noruega. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description This paper presents the analytical linearization of aerodynamic loads (computed with the unsteady vortex-lattice method), which is formulated as tangent matrices with respect to the kinematic states of the aerodynamic grid. The loads and their linearization are then mapped to a nonlinear structural model by means of radial-basis functions, allowing for a two-way strong interaction scheme. The structural model comprises geometrically exact beams formulated in a director-based total Lagrangian description, circumventing the need for rotational degrees of freedom. The structural model is spatially discretized into finite elements and temporally discretized with the help of an implicit scheme that identically preserves momenta and energy. The resulting nonlinear discrete equations are solved by applying Newton’s method, requiring calculating the Jacobians of the whole aeroelastic system. The correctness of the linearized loads is then shown by direct comparison with their numerical counterparts. In addition, we employ our strongly coupled aeroelastic model to investigate the nonlinear static and dynamic behavior of a suspension bridge. With this approach, we successfully investigate the numerical features of the aeroelastic system under divergence and flutter conditions.
publishDate 2024
dc.date.none.fl_str_mv 2024-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/278692
Hente, Christian; Roccia, Bruno Antonio; Rolfes, Raimund; Gebhardt, Cristian Guillermo; Analytical Linearization of Aerodynamic Loads in Unsteady Vortex-Lattice Method for Nonlinear Aeroelastic Applications; Amer Inst Aeronaut Astronaut; Aiaa - American Institute Of Aeronautics And Astronautics; 62; 10; 10-2024; 3857-3880
0001-1452
CONICET Digital
CONICET
url http://hdl.handle.net/11336/278692
identifier_str_mv Hente, Christian; Roccia, Bruno Antonio; Rolfes, Raimund; Gebhardt, Cristian Guillermo; Analytical Linearization of Aerodynamic Loads in Unsteady Vortex-Lattice Method for Nonlinear Aeroelastic Applications; Amer Inst Aeronaut Astronaut; Aiaa - American Institute Of Aeronautics And Astronautics; 62; 10; 10-2024; 3857-3880
0001-1452
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arc.aiaa.org/doi/10.2514/1.J063693
info:eu-repo/semantics/altIdentifier/doi/10.2514/1.J063693
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Amer Inst Aeronaut Astronaut
publisher.none.fl_str_mv Amer Inst Aeronaut Astronaut
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1854321681413177344
score 13.065482