Solving the DNA fragment assembly problem with a parallel discrete firefly algorithm implemented on GPU
- Autores
- Vidal, Pablo Javier; Olivera, Ana Carolina
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Deoxyribonucleic Acid Fragment Assembly Problem (DNA-FAP) consists in reconstructing a DNA chain from a set of fragments taken randomly. This problem represents an important step in the genome project. Several authors are proposed different approaches to solve the DNA-FAP. In particular, nature-inspired algorithms have been used for its resolution. Even they were obtaining good results; its computational time associated is high. The bio-inspired algorithms are iterative search processes that can explore and exploit efficiently the solution space. Firefly Algorithm is one of the recent evolutionary computing models which is inspired by the flashing light behaviour of fireflies. Recently, the Graphics Processing Units (GPUs) technology are emerge as a novel environment for a parallel implementation and execution of bio-inspired algorithms. Therefore, the use of GPU-based parallel computing it is possible as a complementary tool to speed-up the search. In this work, we design and implement a Discrete Firefly Algorithm (DFA) on a GPU architecture in order to speed-up the search process for solving the DNA Fragment Assembly Problem. Through several experiments, the efficiency of the algorithm and the quality of the results are demonstrated with the potential to applied for longer sequences or sequences of unknown length as well.
Fil: Vidal, Pablo Javier. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Departamento de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia Golfo San Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia Golfo San Jorge. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigaciones y Transferencia Golfo San Jorge; Argentina
Fil: Olivera, Ana Carolina. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia Golfo San Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia Golfo San Jorge. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigaciones y Transferencia Golfo San Jorge; Argentina. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Departamento de Ciencias Exactas y Naturales; Argentina - Materia
-
DNA FRAGMENT ASSEMBLY PROBLEM
GRAPHIC PROCESSING UNITS
PARALLELISM
FIREFLY ALGORITHM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/102302
Ver los metadatos del registro completo
id |
CONICETDig_6656c9cd0561ce6af59ec4123b6747eb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/102302 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Solving the DNA fragment assembly problem with a parallel discrete firefly algorithm implemented on GPUVidal, Pablo JavierOlivera, Ana CarolinaDNA FRAGMENT ASSEMBLY PROBLEMGRAPHIC PROCESSING UNITSPARALLELISMFIREFLY ALGORITHMhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The Deoxyribonucleic Acid Fragment Assembly Problem (DNA-FAP) consists in reconstructing a DNA chain from a set of fragments taken randomly. This problem represents an important step in the genome project. Several authors are proposed different approaches to solve the DNA-FAP. In particular, nature-inspired algorithms have been used for its resolution. Even they were obtaining good results; its computational time associated is high. The bio-inspired algorithms are iterative search processes that can explore and exploit efficiently the solution space. Firefly Algorithm is one of the recent evolutionary computing models which is inspired by the flashing light behaviour of fireflies. Recently, the Graphics Processing Units (GPUs) technology are emerge as a novel environment for a parallel implementation and execution of bio-inspired algorithms. Therefore, the use of GPU-based parallel computing it is possible as a complementary tool to speed-up the search. In this work, we design and implement a Discrete Firefly Algorithm (DFA) on a GPU architecture in order to speed-up the search process for solving the DNA Fragment Assembly Problem. Through several experiments, the efficiency of the algorithm and the quality of the results are demonstrated with the potential to applied for longer sequences or sequences of unknown length as well.Fil: Vidal, Pablo Javier. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Departamento de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia Golfo San Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia Golfo San Jorge. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigaciones y Transferencia Golfo San Jorge; ArgentinaFil: Olivera, Ana Carolina. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia Golfo San Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia Golfo San Jorge. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigaciones y Transferencia Golfo San Jorge; Argentina. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Departamento de Ciencias Exactas y Naturales; ArgentinaComsis Consortium2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/102302Vidal, Pablo Javier; Olivera, Ana Carolina; Solving the DNA fragment assembly problem with a parallel discrete firefly algorithm implemented on GPU; Comsis Consortium; Computer Science And Information Systems; 15; 2; 7-2018; 273-2931820-0214CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.doiserbia.nb.rs/Article.aspx?ID=1820-02141800009Vinfo:eu-repo/semantics/altIdentifier/doi/10.2298/CSIS170510009Vinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:26Zoai:ri.conicet.gov.ar:11336/102302instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:27.232CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Solving the DNA fragment assembly problem with a parallel discrete firefly algorithm implemented on GPU |
title |
Solving the DNA fragment assembly problem with a parallel discrete firefly algorithm implemented on GPU |
spellingShingle |
Solving the DNA fragment assembly problem with a parallel discrete firefly algorithm implemented on GPU Vidal, Pablo Javier DNA FRAGMENT ASSEMBLY PROBLEM GRAPHIC PROCESSING UNITS PARALLELISM FIREFLY ALGORITHM |
title_short |
Solving the DNA fragment assembly problem with a parallel discrete firefly algorithm implemented on GPU |
title_full |
Solving the DNA fragment assembly problem with a parallel discrete firefly algorithm implemented on GPU |
title_fullStr |
Solving the DNA fragment assembly problem with a parallel discrete firefly algorithm implemented on GPU |
title_full_unstemmed |
Solving the DNA fragment assembly problem with a parallel discrete firefly algorithm implemented on GPU |
title_sort |
Solving the DNA fragment assembly problem with a parallel discrete firefly algorithm implemented on GPU |
dc.creator.none.fl_str_mv |
Vidal, Pablo Javier Olivera, Ana Carolina |
author |
Vidal, Pablo Javier |
author_facet |
Vidal, Pablo Javier Olivera, Ana Carolina |
author_role |
author |
author2 |
Olivera, Ana Carolina |
author2_role |
author |
dc.subject.none.fl_str_mv |
DNA FRAGMENT ASSEMBLY PROBLEM GRAPHIC PROCESSING UNITS PARALLELISM FIREFLY ALGORITHM |
topic |
DNA FRAGMENT ASSEMBLY PROBLEM GRAPHIC PROCESSING UNITS PARALLELISM FIREFLY ALGORITHM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Deoxyribonucleic Acid Fragment Assembly Problem (DNA-FAP) consists in reconstructing a DNA chain from a set of fragments taken randomly. This problem represents an important step in the genome project. Several authors are proposed different approaches to solve the DNA-FAP. In particular, nature-inspired algorithms have been used for its resolution. Even they were obtaining good results; its computational time associated is high. The bio-inspired algorithms are iterative search processes that can explore and exploit efficiently the solution space. Firefly Algorithm is one of the recent evolutionary computing models which is inspired by the flashing light behaviour of fireflies. Recently, the Graphics Processing Units (GPUs) technology are emerge as a novel environment for a parallel implementation and execution of bio-inspired algorithms. Therefore, the use of GPU-based parallel computing it is possible as a complementary tool to speed-up the search. In this work, we design and implement a Discrete Firefly Algorithm (DFA) on a GPU architecture in order to speed-up the search process for solving the DNA Fragment Assembly Problem. Through several experiments, the efficiency of the algorithm and the quality of the results are demonstrated with the potential to applied for longer sequences or sequences of unknown length as well. Fil: Vidal, Pablo Javier. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Departamento de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia Golfo San Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia Golfo San Jorge. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigaciones y Transferencia Golfo San Jorge; Argentina Fil: Olivera, Ana Carolina. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia Golfo San Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia Golfo San Jorge. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigaciones y Transferencia Golfo San Jorge; Argentina. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Departamento de Ciencias Exactas y Naturales; Argentina |
description |
The Deoxyribonucleic Acid Fragment Assembly Problem (DNA-FAP) consists in reconstructing a DNA chain from a set of fragments taken randomly. This problem represents an important step in the genome project. Several authors are proposed different approaches to solve the DNA-FAP. In particular, nature-inspired algorithms have been used for its resolution. Even they were obtaining good results; its computational time associated is high. The bio-inspired algorithms are iterative search processes that can explore and exploit efficiently the solution space. Firefly Algorithm is one of the recent evolutionary computing models which is inspired by the flashing light behaviour of fireflies. Recently, the Graphics Processing Units (GPUs) technology are emerge as a novel environment for a parallel implementation and execution of bio-inspired algorithms. Therefore, the use of GPU-based parallel computing it is possible as a complementary tool to speed-up the search. In this work, we design and implement a Discrete Firefly Algorithm (DFA) on a GPU architecture in order to speed-up the search process for solving the DNA Fragment Assembly Problem. Through several experiments, the efficiency of the algorithm and the quality of the results are demonstrated with the potential to applied for longer sequences or sequences of unknown length as well. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/102302 Vidal, Pablo Javier; Olivera, Ana Carolina; Solving the DNA fragment assembly problem with a parallel discrete firefly algorithm implemented on GPU; Comsis Consortium; Computer Science And Information Systems; 15; 2; 7-2018; 273-293 1820-0214 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/102302 |
identifier_str_mv |
Vidal, Pablo Javier; Olivera, Ana Carolina; Solving the DNA fragment assembly problem with a parallel discrete firefly algorithm implemented on GPU; Comsis Consortium; Computer Science And Information Systems; 15; 2; 7-2018; 273-293 1820-0214 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.doiserbia.nb.rs/Article.aspx?ID=1820-02141800009V info:eu-repo/semantics/altIdentifier/doi/10.2298/CSIS170510009V |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Comsis Consortium |
publisher.none.fl_str_mv |
Comsis Consortium |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613994205151232 |
score |
13.070432 |