Non-linear oscillations of a thin-walled composite beam with shear deformation

Autores
Machado, Sebastián Pablo; Saravia, César Martín; Dotti, Franco Ezequiel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A geometrically non-linear theory is used to study the dynamic behavior of a thin-walled composite beam. The model is based on a small strain and large rotation and displacements theory, which is formulated through the adoption of a higher-order displacement field and takes into account shear flexibility (bending and warping shear). In the analysis of a weakly nonlinear continuous system, the Ritz's method is employed to express the problem in terms of generalized coordinates. Then, perturbation method of multiple scales is applied to the reduced system in order to obtain the equations of amplitude and modulation. In this paper, the non-linear 3D oscillations of a simply-supported beam are examined, considering a cross-section having one symmetry axis. Composite is assumed to be made of symmetric balanced laminates and especially orthotropic laminates. The model, which contains both quadratic and cubic non-linearities, is assumed to be in internal resonance condition. Steady-state solution and their stability are investigated by means of the eigenvalues of the Jacobian matrix. The equilibrium solution is governed by the modal coupling and experience a complex behavior composed by saddle noddle, Hopf and double period bifurcations.
Fil: Machado, Sebastián Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina
Fil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina
Fil: Dotti, Franco Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina
Materia
Composite Material
Internal Resonance
Shear Flexibility
Thin-Walled Beams
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/79061

id CONICETDig_661c02332a6ff8036d254cb9550d0da5
oai_identifier_str oai:ri.conicet.gov.ar:11336/79061
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Non-linear oscillations of a thin-walled composite beam with shear deformationMachado, Sebastián PabloSaravia, César MartínDotti, Franco EzequielComposite MaterialInternal ResonanceShear FlexibilityThin-Walled Beamshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2A geometrically non-linear theory is used to study the dynamic behavior of a thin-walled composite beam. The model is based on a small strain and large rotation and displacements theory, which is formulated through the adoption of a higher-order displacement field and takes into account shear flexibility (bending and warping shear). In the analysis of a weakly nonlinear continuous system, the Ritz's method is employed to express the problem in terms of generalized coordinates. Then, perturbation method of multiple scales is applied to the reduced system in order to obtain the equations of amplitude and modulation. In this paper, the non-linear 3D oscillations of a simply-supported beam are examined, considering a cross-section having one symmetry axis. Composite is assumed to be made of symmetric balanced laminates and especially orthotropic laminates. The model, which contains both quadratic and cubic non-linearities, is assumed to be in internal resonance condition. Steady-state solution and their stability are investigated by means of the eigenvalues of the Jacobian matrix. The equilibrium solution is governed by the modal coupling and experience a complex behavior composed by saddle noddle, Hopf and double period bifurcations.Fil: Machado, Sebastián Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; ArgentinaFil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; ArgentinaFil: Dotti, Franco Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; ArgentinaElsevier Science Inc2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79061Machado, Sebastián Pablo; Saravia, César Martín; Dotti, Franco Ezequiel; Non-linear oscillations of a thin-walled composite beam with shear deformation; Elsevier Science Inc; Applied Mathematical Modelling; 38; 4; 2-2014; 1523-15330307-904XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0307904X13005386info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apm.2013.08.028info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:38Zoai:ri.conicet.gov.ar:11336/79061instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:39.229CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Non-linear oscillations of a thin-walled composite beam with shear deformation
title Non-linear oscillations of a thin-walled composite beam with shear deformation
spellingShingle Non-linear oscillations of a thin-walled composite beam with shear deformation
Machado, Sebastián Pablo
Composite Material
Internal Resonance
Shear Flexibility
Thin-Walled Beams
title_short Non-linear oscillations of a thin-walled composite beam with shear deformation
title_full Non-linear oscillations of a thin-walled composite beam with shear deformation
title_fullStr Non-linear oscillations of a thin-walled composite beam with shear deformation
title_full_unstemmed Non-linear oscillations of a thin-walled composite beam with shear deformation
title_sort Non-linear oscillations of a thin-walled composite beam with shear deformation
dc.creator.none.fl_str_mv Machado, Sebastián Pablo
Saravia, César Martín
Dotti, Franco Ezequiel
author Machado, Sebastián Pablo
author_facet Machado, Sebastián Pablo
Saravia, César Martín
Dotti, Franco Ezequiel
author_role author
author2 Saravia, César Martín
Dotti, Franco Ezequiel
author2_role author
author
dc.subject.none.fl_str_mv Composite Material
Internal Resonance
Shear Flexibility
Thin-Walled Beams
topic Composite Material
Internal Resonance
Shear Flexibility
Thin-Walled Beams
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A geometrically non-linear theory is used to study the dynamic behavior of a thin-walled composite beam. The model is based on a small strain and large rotation and displacements theory, which is formulated through the adoption of a higher-order displacement field and takes into account shear flexibility (bending and warping shear). In the analysis of a weakly nonlinear continuous system, the Ritz's method is employed to express the problem in terms of generalized coordinates. Then, perturbation method of multiple scales is applied to the reduced system in order to obtain the equations of amplitude and modulation. In this paper, the non-linear 3D oscillations of a simply-supported beam are examined, considering a cross-section having one symmetry axis. Composite is assumed to be made of symmetric balanced laminates and especially orthotropic laminates. The model, which contains both quadratic and cubic non-linearities, is assumed to be in internal resonance condition. Steady-state solution and their stability are investigated by means of the eigenvalues of the Jacobian matrix. The equilibrium solution is governed by the modal coupling and experience a complex behavior composed by saddle noddle, Hopf and double period bifurcations.
Fil: Machado, Sebastián Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina
Fil: Saravia, César Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina
Fil: Dotti, Franco Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina
description A geometrically non-linear theory is used to study the dynamic behavior of a thin-walled composite beam. The model is based on a small strain and large rotation and displacements theory, which is formulated through the adoption of a higher-order displacement field and takes into account shear flexibility (bending and warping shear). In the analysis of a weakly nonlinear continuous system, the Ritz's method is employed to express the problem in terms of generalized coordinates. Then, perturbation method of multiple scales is applied to the reduced system in order to obtain the equations of amplitude and modulation. In this paper, the non-linear 3D oscillations of a simply-supported beam are examined, considering a cross-section having one symmetry axis. Composite is assumed to be made of symmetric balanced laminates and especially orthotropic laminates. The model, which contains both quadratic and cubic non-linearities, is assumed to be in internal resonance condition. Steady-state solution and their stability are investigated by means of the eigenvalues of the Jacobian matrix. The equilibrium solution is governed by the modal coupling and experience a complex behavior composed by saddle noddle, Hopf and double period bifurcations.
publishDate 2014
dc.date.none.fl_str_mv 2014-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/79061
Machado, Sebastián Pablo; Saravia, César Martín; Dotti, Franco Ezequiel; Non-linear oscillations of a thin-walled composite beam with shear deformation; Elsevier Science Inc; Applied Mathematical Modelling; 38; 4; 2-2014; 1523-1533
0307-904X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/79061
identifier_str_mv Machado, Sebastián Pablo; Saravia, César Martín; Dotti, Franco Ezequiel; Non-linear oscillations of a thin-walled composite beam with shear deformation; Elsevier Science Inc; Applied Mathematical Modelling; 38; 4; 2-2014; 1523-1533
0307-904X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0307904X13005386
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apm.2013.08.028
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc
publisher.none.fl_str_mv Elsevier Science Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614267969470464
score 13.070432