From Magnitudes to Geometry and Back: De Zolt's Postulate
- Autores
- Giovannini, Eduardo Nicolás; Lassalle-Casanave, Abel
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A crucial trend of nineteenth-century mathematics was the search for pure foundations of specific mathematical domains by avoiding the obscure concept of magnitude. In this paper, we examine this trend by considering the “fundamental theorem” of the theory of plane area: “If a polygon is decomposed into polygonal parts in any given way, then the union of all but one of these parts is not equivalent to the given polygon.” This proposition, known as De Zolt's postulate, was conceived as a strictly geometrical expression of the general principle of magnitudes “the whole is greater than the part.” On the one hand, we illustrate this striving for purity in the foundations of geometry by analysing David Hilbert's classical proof of De Zolt's postulate. On the other hand, we connect this geometrical problem with the first axiomatizations of the concept of magnitude by the end of the nineteenth century. In particular, we argue that a recent result in the logical analysis of the concept of magnitude casts new light on Hilbert's proof. We also outline an alternative development of a theory of magnitude that includes a proof of De Zolt's postulate in an abstract setting.
Fil: Giovannini, Eduardo Nicolás. Universidad de Viena; Austria. Universidad Nacional del Litoral. Instituto de Humanidades y Ciencias Sociales del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Humanidades y Ciencias Sociales del Litoral; Argentina
Fil: Lassalle-Casanave, Abel. Universidade Federal da Bahia; Brasil - Materia
-
DE ZOLT'S POSTULATE
EUCLIDEAN GEOMETRY
GENERAL MAGNITUDES
HILBERT
LOGICAL ANALYSIS
PLANE AREA
PURITY OF METHOD
WHOLE AND PARTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/203766
Ver los metadatos del registro completo
id |
CONICETDig_65f82a7f1d38be0cba3178bcbb90c0b5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/203766 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
From Magnitudes to Geometry and Back: De Zolt's PostulateGiovannini, Eduardo NicolásLassalle-Casanave, AbelDE ZOLT'S POSTULATEEUCLIDEAN GEOMETRYGENERAL MAGNITUDESHILBERTLOGICAL ANALYSISPLANE AREAPURITY OF METHODWHOLE AND PARTShttps://purl.org/becyt/ford/6.3https://purl.org/becyt/ford/6A crucial trend of nineteenth-century mathematics was the search for pure foundations of specific mathematical domains by avoiding the obscure concept of magnitude. In this paper, we examine this trend by considering the “fundamental theorem” of the theory of plane area: “If a polygon is decomposed into polygonal parts in any given way, then the union of all but one of these parts is not equivalent to the given polygon.” This proposition, known as De Zolt's postulate, was conceived as a strictly geometrical expression of the general principle of magnitudes “the whole is greater than the part.” On the one hand, we illustrate this striving for purity in the foundations of geometry by analysing David Hilbert's classical proof of De Zolt's postulate. On the other hand, we connect this geometrical problem with the first axiomatizations of the concept of magnitude by the end of the nineteenth century. In particular, we argue that a recent result in the logical analysis of the concept of magnitude casts new light on Hilbert's proof. We also outline an alternative development of a theory of magnitude that includes a proof of De Zolt's postulate in an abstract setting.Fil: Giovannini, Eduardo Nicolás. Universidad de Viena; Austria. Universidad Nacional del Litoral. Instituto de Humanidades y Ciencias Sociales del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Humanidades y Ciencias Sociales del Litoral; ArgentinaFil: Lassalle-Casanave, Abel. Universidade Federal da Bahia; BrasilWiley2022-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/203766Giovannini, Eduardo Nicolás; Lassalle-Casanave, Abel; From Magnitudes to Geometry and Back: De Zolt's Postulate; Wiley; Theoria; 88; 3; 6-2022; 629-6521755-2567CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/theo.12385info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:07Zoai:ri.conicet.gov.ar:11336/203766instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:08.209CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
From Magnitudes to Geometry and Back: De Zolt's Postulate |
title |
From Magnitudes to Geometry and Back: De Zolt's Postulate |
spellingShingle |
From Magnitudes to Geometry and Back: De Zolt's Postulate Giovannini, Eduardo Nicolás DE ZOLT'S POSTULATE EUCLIDEAN GEOMETRY GENERAL MAGNITUDES HILBERT LOGICAL ANALYSIS PLANE AREA PURITY OF METHOD WHOLE AND PARTS |
title_short |
From Magnitudes to Geometry and Back: De Zolt's Postulate |
title_full |
From Magnitudes to Geometry and Back: De Zolt's Postulate |
title_fullStr |
From Magnitudes to Geometry and Back: De Zolt's Postulate |
title_full_unstemmed |
From Magnitudes to Geometry and Back: De Zolt's Postulate |
title_sort |
From Magnitudes to Geometry and Back: De Zolt's Postulate |
dc.creator.none.fl_str_mv |
Giovannini, Eduardo Nicolás Lassalle-Casanave, Abel |
author |
Giovannini, Eduardo Nicolás |
author_facet |
Giovannini, Eduardo Nicolás Lassalle-Casanave, Abel |
author_role |
author |
author2 |
Lassalle-Casanave, Abel |
author2_role |
author |
dc.subject.none.fl_str_mv |
DE ZOLT'S POSTULATE EUCLIDEAN GEOMETRY GENERAL MAGNITUDES HILBERT LOGICAL ANALYSIS PLANE AREA PURITY OF METHOD WHOLE AND PARTS |
topic |
DE ZOLT'S POSTULATE EUCLIDEAN GEOMETRY GENERAL MAGNITUDES HILBERT LOGICAL ANALYSIS PLANE AREA PURITY OF METHOD WHOLE AND PARTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/6.3 https://purl.org/becyt/ford/6 |
dc.description.none.fl_txt_mv |
A crucial trend of nineteenth-century mathematics was the search for pure foundations of specific mathematical domains by avoiding the obscure concept of magnitude. In this paper, we examine this trend by considering the “fundamental theorem” of the theory of plane area: “If a polygon is decomposed into polygonal parts in any given way, then the union of all but one of these parts is not equivalent to the given polygon.” This proposition, known as De Zolt's postulate, was conceived as a strictly geometrical expression of the general principle of magnitudes “the whole is greater than the part.” On the one hand, we illustrate this striving for purity in the foundations of geometry by analysing David Hilbert's classical proof of De Zolt's postulate. On the other hand, we connect this geometrical problem with the first axiomatizations of the concept of magnitude by the end of the nineteenth century. In particular, we argue that a recent result in the logical analysis of the concept of magnitude casts new light on Hilbert's proof. We also outline an alternative development of a theory of magnitude that includes a proof of De Zolt's postulate in an abstract setting. Fil: Giovannini, Eduardo Nicolás. Universidad de Viena; Austria. Universidad Nacional del Litoral. Instituto de Humanidades y Ciencias Sociales del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Humanidades y Ciencias Sociales del Litoral; Argentina Fil: Lassalle-Casanave, Abel. Universidade Federal da Bahia; Brasil |
description |
A crucial trend of nineteenth-century mathematics was the search for pure foundations of specific mathematical domains by avoiding the obscure concept of magnitude. In this paper, we examine this trend by considering the “fundamental theorem” of the theory of plane area: “If a polygon is decomposed into polygonal parts in any given way, then the union of all but one of these parts is not equivalent to the given polygon.” This proposition, known as De Zolt's postulate, was conceived as a strictly geometrical expression of the general principle of magnitudes “the whole is greater than the part.” On the one hand, we illustrate this striving for purity in the foundations of geometry by analysing David Hilbert's classical proof of De Zolt's postulate. On the other hand, we connect this geometrical problem with the first axiomatizations of the concept of magnitude by the end of the nineteenth century. In particular, we argue that a recent result in the logical analysis of the concept of magnitude casts new light on Hilbert's proof. We also outline an alternative development of a theory of magnitude that includes a proof of De Zolt's postulate in an abstract setting. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/203766 Giovannini, Eduardo Nicolás; Lassalle-Casanave, Abel; From Magnitudes to Geometry and Back: De Zolt's Postulate; Wiley; Theoria; 88; 3; 6-2022; 629-652 1755-2567 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/203766 |
identifier_str_mv |
Giovannini, Eduardo Nicolás; Lassalle-Casanave, Abel; From Magnitudes to Geometry and Back: De Zolt's Postulate; Wiley; Theoria; 88; 3; 6-2022; 629-652 1755-2567 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/theo.12385 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613801864855552 |
score |
13.070432 |