Asymptotics of insensitive load balancing and blocking phases

Autores
Jonckheere, Matthieu Thimothy Samson; Prabhu, Balakrishna J.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study a single class of traffic acting on a symmetric set of processor-sharing queues with finite buffers, and we consider the case where the load scales with the number of servers. We address the problem of giving robust performance bounds based on the study of the asymptotic behaviour of the insensitive load balancing schemes, which have the desirable property that the stationary distribution of the resulting stochastic network depends on the distribution of job-sizes only through its mean. It was shown for small systems with losses that they give good estimates of performance indicators, generalizing henceforth Erlang formula, whereas optimal policies are already theoretically and computationally out of reach for networks of moderate size. We characterize the response of symmetric systems under those schemes at different scales and show that three amplitudes of deviations can be identified according to whether ρ< 1 , ρ= 1 , or ρ> 1. A central limit scaling takes place for a sub-critical load; for ρ= 1 , the number of free servers scales like nθθ+1 (θ being the buffer depth and n being the number of servers) and is of order 1 for super-critical loads. This further implies the existence of different phases for the blocking probability. Before a (refined) critical load ρc(n)=1-an-θθ+1, the blocking is exponentially small and becomes of order n-θθ+1 at ρc(n). This generalizes the well-known quality-and-efficiency-driven regime, or Halfin—Whitt regime, for a one-dimensional queue and leads to a generalized staffing rule for a given target blocking probability.
Fil: Jonckheere, Matthieu Thimothy Samson. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Prabhu, Balakrishna J.. Centre National de la Recherche Scientifique; Francia
Materia
Blocking Phases
Insensitive Load Balancing
Mean-Field Scalings
Qed-Jagerman–Halfin–Whitt Regime
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55549

id CONICETDig_65f54f8d319552713eb905ef068c4317
oai_identifier_str oai:ri.conicet.gov.ar:11336/55549
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Asymptotics of insensitive load balancing and blocking phasesJonckheere, Matthieu Thimothy SamsonPrabhu, Balakrishna J.Blocking PhasesInsensitive Load BalancingMean-Field ScalingsQed-Jagerman–Halfin–Whitt Regimehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study a single class of traffic acting on a symmetric set of processor-sharing queues with finite buffers, and we consider the case where the load scales with the number of servers. We address the problem of giving robust performance bounds based on the study of the asymptotic behaviour of the insensitive load balancing schemes, which have the desirable property that the stationary distribution of the resulting stochastic network depends on the distribution of job-sizes only through its mean. It was shown for small systems with losses that they give good estimates of performance indicators, generalizing henceforth Erlang formula, whereas optimal policies are already theoretically and computationally out of reach for networks of moderate size. We characterize the response of symmetric systems under those schemes at different scales and show that three amplitudes of deviations can be identified according to whether ρ< 1 , ρ= 1 , or ρ> 1. A central limit scaling takes place for a sub-critical load; for ρ= 1 , the number of free servers scales like nθθ+1 (θ being the buffer depth and n being the number of servers) and is of order 1 for super-critical loads. This further implies the existence of different phases for the blocking probability. Before a (refined) critical load ρc(n)=1-an-θθ+1, the blocking is exponentially small and becomes of order n-θθ+1 at ρc(n). This generalizes the well-known quality-and-efficiency-driven regime, or Halfin—Whitt regime, for a one-dimensional queue and leads to a generalized staffing rule for a given target blocking probability.Fil: Jonckheere, Matthieu Thimothy Samson. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Prabhu, Balakrishna J.. Centre National de la Recherche Scientifique; FranciaSpringer2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55549Jonckheere, Matthieu Thimothy Samson; Prabhu, Balakrishna J.; Asymptotics of insensitive load balancing and blocking phases; Springer; Queueing Systems; 88; 3-4; 4-2018; 243-2780257-0130CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11134-017-9559-5info:eu-repo/semantics/altIdentifier/doi/10.1007/s11134-017-9559-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:33Zoai:ri.conicet.gov.ar:11336/55549instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:33.751CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Asymptotics of insensitive load balancing and blocking phases
title Asymptotics of insensitive load balancing and blocking phases
spellingShingle Asymptotics of insensitive load balancing and blocking phases
Jonckheere, Matthieu Thimothy Samson
Blocking Phases
Insensitive Load Balancing
Mean-Field Scalings
Qed-Jagerman–Halfin–Whitt Regime
title_short Asymptotics of insensitive load balancing and blocking phases
title_full Asymptotics of insensitive load balancing and blocking phases
title_fullStr Asymptotics of insensitive load balancing and blocking phases
title_full_unstemmed Asymptotics of insensitive load balancing and blocking phases
title_sort Asymptotics of insensitive load balancing and blocking phases
dc.creator.none.fl_str_mv Jonckheere, Matthieu Thimothy Samson
Prabhu, Balakrishna J.
author Jonckheere, Matthieu Thimothy Samson
author_facet Jonckheere, Matthieu Thimothy Samson
Prabhu, Balakrishna J.
author_role author
author2 Prabhu, Balakrishna J.
author2_role author
dc.subject.none.fl_str_mv Blocking Phases
Insensitive Load Balancing
Mean-Field Scalings
Qed-Jagerman–Halfin–Whitt Regime
topic Blocking Phases
Insensitive Load Balancing
Mean-Field Scalings
Qed-Jagerman–Halfin–Whitt Regime
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study a single class of traffic acting on a symmetric set of processor-sharing queues with finite buffers, and we consider the case where the load scales with the number of servers. We address the problem of giving robust performance bounds based on the study of the asymptotic behaviour of the insensitive load balancing schemes, which have the desirable property that the stationary distribution of the resulting stochastic network depends on the distribution of job-sizes only through its mean. It was shown for small systems with losses that they give good estimates of performance indicators, generalizing henceforth Erlang formula, whereas optimal policies are already theoretically and computationally out of reach for networks of moderate size. We characterize the response of symmetric systems under those schemes at different scales and show that three amplitudes of deviations can be identified according to whether ρ< 1 , ρ= 1 , or ρ> 1. A central limit scaling takes place for a sub-critical load; for ρ= 1 , the number of free servers scales like nθθ+1 (θ being the buffer depth and n being the number of servers) and is of order 1 for super-critical loads. This further implies the existence of different phases for the blocking probability. Before a (refined) critical load ρc(n)=1-an-θθ+1, the blocking is exponentially small and becomes of order n-θθ+1 at ρc(n). This generalizes the well-known quality-and-efficiency-driven regime, or Halfin—Whitt regime, for a one-dimensional queue and leads to a generalized staffing rule for a given target blocking probability.
Fil: Jonckheere, Matthieu Thimothy Samson. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Prabhu, Balakrishna J.. Centre National de la Recherche Scientifique; Francia
description We study a single class of traffic acting on a symmetric set of processor-sharing queues with finite buffers, and we consider the case where the load scales with the number of servers. We address the problem of giving robust performance bounds based on the study of the asymptotic behaviour of the insensitive load balancing schemes, which have the desirable property that the stationary distribution of the resulting stochastic network depends on the distribution of job-sizes only through its mean. It was shown for small systems with losses that they give good estimates of performance indicators, generalizing henceforth Erlang formula, whereas optimal policies are already theoretically and computationally out of reach for networks of moderate size. We characterize the response of symmetric systems under those schemes at different scales and show that three amplitudes of deviations can be identified according to whether ρ< 1 , ρ= 1 , or ρ> 1. A central limit scaling takes place for a sub-critical load; for ρ= 1 , the number of free servers scales like nθθ+1 (θ being the buffer depth and n being the number of servers) and is of order 1 for super-critical loads. This further implies the existence of different phases for the blocking probability. Before a (refined) critical load ρc(n)=1-an-θθ+1, the blocking is exponentially small and becomes of order n-θθ+1 at ρc(n). This generalizes the well-known quality-and-efficiency-driven regime, or Halfin—Whitt regime, for a one-dimensional queue and leads to a generalized staffing rule for a given target blocking probability.
publishDate 2018
dc.date.none.fl_str_mv 2018-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55549
Jonckheere, Matthieu Thimothy Samson; Prabhu, Balakrishna J.; Asymptotics of insensitive load balancing and blocking phases; Springer; Queueing Systems; 88; 3-4; 4-2018; 243-278
0257-0130
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55549
identifier_str_mv Jonckheere, Matthieu Thimothy Samson; Prabhu, Balakrishna J.; Asymptotics of insensitive load balancing and blocking phases; Springer; Queueing Systems; 88; 3-4; 4-2018; 243-278
0257-0130
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11134-017-9559-5
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11134-017-9559-5
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268610134802432
score 13.13397