Asymptotics of insensitive load balancing and blocking phases
- Autores
- Jonckheere, Matthieu Thimothy Samson; Prabhu, Balakrishna J.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study a single class of traffic acting on a symmetric set of processor-sharing queues with finite buffers, and we consider the case where the load scales with the number of servers. We address the problem of giving robust performance bounds based on the study of the asymptotic behaviour of the insensitive load balancing schemes, which have the desirable property that the stationary distribution of the resulting stochastic network depends on the distribution of job-sizes only through its mean. It was shown for small systems with losses that they give good estimates of performance indicators, generalizing henceforth Erlang formula, whereas optimal policies are already theoretically and computationally out of reach for networks of moderate size. We characterize the response of symmetric systems under those schemes at different scales and show that three amplitudes of deviations can be identified according to whether ρ< 1 , ρ= 1 , or ρ> 1. A central limit scaling takes place for a sub-critical load; for ρ= 1 , the number of free servers scales like nθθ+1 (θ being the buffer depth and n being the number of servers) and is of order 1 for super-critical loads. This further implies the existence of different phases for the blocking probability. Before a (refined) critical load ρc(n)=1-an-θθ+1, the blocking is exponentially small and becomes of order n-θθ+1 at ρc(n). This generalizes the well-known quality-and-efficiency-driven regime, or Halfin—Whitt regime, for a one-dimensional queue and leads to a generalized staffing rule for a given target blocking probability.
Fil: Jonckheere, Matthieu Thimothy Samson. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Prabhu, Balakrishna J.. Centre National de la Recherche Scientifique; Francia - Materia
-
Blocking Phases
Insensitive Load Balancing
Mean-Field Scalings
Qed-Jagerman–Halfin–Whitt Regime - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55549
Ver los metadatos del registro completo
id |
CONICETDig_65f54f8d319552713eb905ef068c4317 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55549 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Asymptotics of insensitive load balancing and blocking phasesJonckheere, Matthieu Thimothy SamsonPrabhu, Balakrishna J.Blocking PhasesInsensitive Load BalancingMean-Field ScalingsQed-Jagerman–Halfin–Whitt Regimehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study a single class of traffic acting on a symmetric set of processor-sharing queues with finite buffers, and we consider the case where the load scales with the number of servers. We address the problem of giving robust performance bounds based on the study of the asymptotic behaviour of the insensitive load balancing schemes, which have the desirable property that the stationary distribution of the resulting stochastic network depends on the distribution of job-sizes only through its mean. It was shown for small systems with losses that they give good estimates of performance indicators, generalizing henceforth Erlang formula, whereas optimal policies are already theoretically and computationally out of reach for networks of moderate size. We characterize the response of symmetric systems under those schemes at different scales and show that three amplitudes of deviations can be identified according to whether ρ< 1 , ρ= 1 , or ρ> 1. A central limit scaling takes place for a sub-critical load; for ρ= 1 , the number of free servers scales like nθθ+1 (θ being the buffer depth and n being the number of servers) and is of order 1 for super-critical loads. This further implies the existence of different phases for the blocking probability. Before a (refined) critical load ρc(n)=1-an-θθ+1, the blocking is exponentially small and becomes of order n-θθ+1 at ρc(n). This generalizes the well-known quality-and-efficiency-driven regime, or Halfin—Whitt regime, for a one-dimensional queue and leads to a generalized staffing rule for a given target blocking probability.Fil: Jonckheere, Matthieu Thimothy Samson. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Prabhu, Balakrishna J.. Centre National de la Recherche Scientifique; FranciaSpringer2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55549Jonckheere, Matthieu Thimothy Samson; Prabhu, Balakrishna J.; Asymptotics of insensitive load balancing and blocking phases; Springer; Queueing Systems; 88; 3-4; 4-2018; 243-2780257-0130CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11134-017-9559-5info:eu-repo/semantics/altIdentifier/doi/10.1007/s11134-017-9559-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:33Zoai:ri.conicet.gov.ar:11336/55549instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:33.751CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Asymptotics of insensitive load balancing and blocking phases |
title |
Asymptotics of insensitive load balancing and blocking phases |
spellingShingle |
Asymptotics of insensitive load balancing and blocking phases Jonckheere, Matthieu Thimothy Samson Blocking Phases Insensitive Load Balancing Mean-Field Scalings Qed-Jagerman–Halfin–Whitt Regime |
title_short |
Asymptotics of insensitive load balancing and blocking phases |
title_full |
Asymptotics of insensitive load balancing and blocking phases |
title_fullStr |
Asymptotics of insensitive load balancing and blocking phases |
title_full_unstemmed |
Asymptotics of insensitive load balancing and blocking phases |
title_sort |
Asymptotics of insensitive load balancing and blocking phases |
dc.creator.none.fl_str_mv |
Jonckheere, Matthieu Thimothy Samson Prabhu, Balakrishna J. |
author |
Jonckheere, Matthieu Thimothy Samson |
author_facet |
Jonckheere, Matthieu Thimothy Samson Prabhu, Balakrishna J. |
author_role |
author |
author2 |
Prabhu, Balakrishna J. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Blocking Phases Insensitive Load Balancing Mean-Field Scalings Qed-Jagerman–Halfin–Whitt Regime |
topic |
Blocking Phases Insensitive Load Balancing Mean-Field Scalings Qed-Jagerman–Halfin–Whitt Regime |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study a single class of traffic acting on a symmetric set of processor-sharing queues with finite buffers, and we consider the case where the load scales with the number of servers. We address the problem of giving robust performance bounds based on the study of the asymptotic behaviour of the insensitive load balancing schemes, which have the desirable property that the stationary distribution of the resulting stochastic network depends on the distribution of job-sizes only through its mean. It was shown for small systems with losses that they give good estimates of performance indicators, generalizing henceforth Erlang formula, whereas optimal policies are already theoretically and computationally out of reach for networks of moderate size. We characterize the response of symmetric systems under those schemes at different scales and show that three amplitudes of deviations can be identified according to whether ρ< 1 , ρ= 1 , or ρ> 1. A central limit scaling takes place for a sub-critical load; for ρ= 1 , the number of free servers scales like nθθ+1 (θ being the buffer depth and n being the number of servers) and is of order 1 for super-critical loads. This further implies the existence of different phases for the blocking probability. Before a (refined) critical load ρc(n)=1-an-θθ+1, the blocking is exponentially small and becomes of order n-θθ+1 at ρc(n). This generalizes the well-known quality-and-efficiency-driven regime, or Halfin—Whitt regime, for a one-dimensional queue and leads to a generalized staffing rule for a given target blocking probability. Fil: Jonckheere, Matthieu Thimothy Samson. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Prabhu, Balakrishna J.. Centre National de la Recherche Scientifique; Francia |
description |
We study a single class of traffic acting on a symmetric set of processor-sharing queues with finite buffers, and we consider the case where the load scales with the number of servers. We address the problem of giving robust performance bounds based on the study of the asymptotic behaviour of the insensitive load balancing schemes, which have the desirable property that the stationary distribution of the resulting stochastic network depends on the distribution of job-sizes only through its mean. It was shown for small systems with losses that they give good estimates of performance indicators, generalizing henceforth Erlang formula, whereas optimal policies are already theoretically and computationally out of reach for networks of moderate size. We characterize the response of symmetric systems under those schemes at different scales and show that three amplitudes of deviations can be identified according to whether ρ< 1 , ρ= 1 , or ρ> 1. A central limit scaling takes place for a sub-critical load; for ρ= 1 , the number of free servers scales like nθθ+1 (θ being the buffer depth and n being the number of servers) and is of order 1 for super-critical loads. This further implies the existence of different phases for the blocking probability. Before a (refined) critical load ρc(n)=1-an-θθ+1, the blocking is exponentially small and becomes of order n-θθ+1 at ρc(n). This generalizes the well-known quality-and-efficiency-driven regime, or Halfin—Whitt regime, for a one-dimensional queue and leads to a generalized staffing rule for a given target blocking probability. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55549 Jonckheere, Matthieu Thimothy Samson; Prabhu, Balakrishna J.; Asymptotics of insensitive load balancing and blocking phases; Springer; Queueing Systems; 88; 3-4; 4-2018; 243-278 0257-0130 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55549 |
identifier_str_mv |
Jonckheere, Matthieu Thimothy Samson; Prabhu, Balakrishna J.; Asymptotics of insensitive load balancing and blocking phases; Springer; Queueing Systems; 88; 3-4; 4-2018; 243-278 0257-0130 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11134-017-9559-5 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11134-017-9559-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268610134802432 |
score |
13.13397 |