An efficient adaptative predictive load balancing method for distributed systems

Autores
Esquivel, Susana Cecilia; Pereyra, C.; Gallard, Raúl Hector
Año de publicación
1998
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
When allocating processors to processes in a distributed system, load balancing is a main concern of designers. By its implementation, system performance can be enhanced by equally distributing the dynamically changing workload and consequently user expectation are improved through an additional reduction on mean response time. In this way, through process migration, a rational and equitable use of the system computational power is achieved, preventing degradation of system performance due to unbalanced work of processors. This article presents an Adaptative Predictive Load Balancing Strategy (APLBS), a variation of Predictive Load Balancing Strategy (PLBS) reported elsewhere [1]. As PLBS, APLBS is a sender initiated, prediction-based strategy for load balancing. The predictive approach is based on estimates given by a weighted exponential average [12] of the load condition of each node in the system. The new approach tries to minimise traffic en the network selecting the most suitable subset of candidates to request migration and the novel aspect is that the size of this subset is adaptative with respect to the system workload. APLBS was contrasted against Random (R), PLBS and Flexible Load Sharing (FLS) [7] strategies on diverse scenarios where the load can be characterised as static or dynamic. A comparative analysis of mean response time, acceptance hit ratio and number of migration failures under each strategy is reported.
Sistemas Distribuidos - Redes Concurrencia
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Informática
distributed systems
load balancing strategies
mean response time
acceptance hit ratio
migration failures
Modeling and prediction
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/24365

id SEDICI_2100f26c45ce5c857f446a2da820287b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/24365
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling An efficient adaptative predictive load balancing method for distributed systemsEsquivel, Susana CeciliaPereyra, C.Gallard, Raúl HectorCiencias InformáticasInformáticadistributed systemsload balancing strategiesmean response timeacceptance hit ratiomigration failuresModeling and predictionWhen allocating processors to processes in a distributed system, load balancing is a main concern of designers. By its implementation, system performance can be enhanced by equally distributing the dynamically changing workload and consequently user expectation are improved through an additional reduction on mean response time. In this way, through process migration, a rational and equitable use of the system computational power is achieved, preventing degradation of system performance due to unbalanced work of processors. This article presents an Adaptative Predictive Load Balancing Strategy (APLBS), a variation of Predictive Load Balancing Strategy (PLBS) reported elsewhere [1]. As PLBS, APLBS is a sender initiated, prediction-based strategy for load balancing. The predictive approach is based on estimates given by a weighted exponential average [12] of the load condition of each node in the system. The new approach tries to minimise traffic en the network selecting the most suitable subset of candidates to request migration and the novel aspect is that the size of this subset is adaptative with respect to the system workload. APLBS was contrasted against Random (R), PLBS and Flexible Load Sharing (FLS) [7] strategies on diverse scenarios where the load can be characterised as static or dynamic. A comparative analysis of mean response time, acceptance hit ratio and number of migration failures under each strategy is reported.Sistemas Distribuidos - Redes ConcurrenciaRed de Universidades con Carreras en Informática (RedUNCI)1998-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/24365enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:35Zoai:sedici.unlp.edu.ar:10915/24365Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:35.723SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv An efficient adaptative predictive load balancing method for distributed systems
title An efficient adaptative predictive load balancing method for distributed systems
spellingShingle An efficient adaptative predictive load balancing method for distributed systems
Esquivel, Susana Cecilia
Ciencias Informáticas
Informática
distributed systems
load balancing strategies
mean response time
acceptance hit ratio
migration failures
Modeling and prediction
title_short An efficient adaptative predictive load balancing method for distributed systems
title_full An efficient adaptative predictive load balancing method for distributed systems
title_fullStr An efficient adaptative predictive load balancing method for distributed systems
title_full_unstemmed An efficient adaptative predictive load balancing method for distributed systems
title_sort An efficient adaptative predictive load balancing method for distributed systems
dc.creator.none.fl_str_mv Esquivel, Susana Cecilia
Pereyra, C.
Gallard, Raúl Hector
author Esquivel, Susana Cecilia
author_facet Esquivel, Susana Cecilia
Pereyra, C.
Gallard, Raúl Hector
author_role author
author2 Pereyra, C.
Gallard, Raúl Hector
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Informática
distributed systems
load balancing strategies
mean response time
acceptance hit ratio
migration failures
Modeling and prediction
topic Ciencias Informáticas
Informática
distributed systems
load balancing strategies
mean response time
acceptance hit ratio
migration failures
Modeling and prediction
dc.description.none.fl_txt_mv When allocating processors to processes in a distributed system, load balancing is a main concern of designers. By its implementation, system performance can be enhanced by equally distributing the dynamically changing workload and consequently user expectation are improved through an additional reduction on mean response time. In this way, through process migration, a rational and equitable use of the system computational power is achieved, preventing degradation of system performance due to unbalanced work of processors. This article presents an Adaptative Predictive Load Balancing Strategy (APLBS), a variation of Predictive Load Balancing Strategy (PLBS) reported elsewhere [1]. As PLBS, APLBS is a sender initiated, prediction-based strategy for load balancing. The predictive approach is based on estimates given by a weighted exponential average [12] of the load condition of each node in the system. The new approach tries to minimise traffic en the network selecting the most suitable subset of candidates to request migration and the novel aspect is that the size of this subset is adaptative with respect to the system workload. APLBS was contrasted against Random (R), PLBS and Flexible Load Sharing (FLS) [7] strategies on diverse scenarios where the load can be characterised as static or dynamic. A comparative analysis of mean response time, acceptance hit ratio and number of migration failures under each strategy is reported.
Sistemas Distribuidos - Redes Concurrencia
Red de Universidades con Carreras en Informática (RedUNCI)
description When allocating processors to processes in a distributed system, load balancing is a main concern of designers. By its implementation, system performance can be enhanced by equally distributing the dynamically changing workload and consequently user expectation are improved through an additional reduction on mean response time. In this way, through process migration, a rational and equitable use of the system computational power is achieved, preventing degradation of system performance due to unbalanced work of processors. This article presents an Adaptative Predictive Load Balancing Strategy (APLBS), a variation of Predictive Load Balancing Strategy (PLBS) reported elsewhere [1]. As PLBS, APLBS is a sender initiated, prediction-based strategy for load balancing. The predictive approach is based on estimates given by a weighted exponential average [12] of the load condition of each node in the system. The new approach tries to minimise traffic en the network selecting the most suitable subset of candidates to request migration and the novel aspect is that the size of this subset is adaptative with respect to the system workload. APLBS was contrasted against Random (R), PLBS and Flexible Load Sharing (FLS) [7] strategies on diverse scenarios where the load can be characterised as static or dynamic. A comparative analysis of mean response time, acceptance hit ratio and number of migration failures under each strategy is reported.
publishDate 1998
dc.date.none.fl_str_mv 1998-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/24365
url http://sedici.unlp.edu.ar/handle/10915/24365
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260125190979584
score 13.13397