Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG
- Autores
- Villa Parra, Ana Cecilia; Delisle Rodriguez, Denis; Botelho, Thomaz; Mayor, John Jairo Villarejo; Delis, Alberto López; Carelli Albarracin, Ricardo Oscar; Neto, Anselmo Frizera; Bastos, Teodiano Freire
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Introduction: This work presents the development of a novel robotic knee exoskeleton controlled by motion intention based on sEMG, which uses admittance control to assist people with reduced mobility and improve their locomotion. Clinical research remark that these devices working in constant interaction with the neuromuscular and skeletal human system improves functional compensation and rehabilitation. Hence, the users become an active part of the training/rehabilitation, facilitating their involvement and improving their neural plasticity. For recognition of the lower-limb motion intention and discrimination of knee movements, sEMG from both lower-limb and trunk are used, which implies a new approach to control robotic assistive devices. Methods: A control system that includes a stage for human-motion intention recognition (HMIR), based on techniques to classify motion classes related to knee joint were developed. For translation of the user’s intention to a desired state for the robotic knee exoskeleton, the system also includes a finite state machine and admittance, velocity and trajectory controllers with a function that allows stopping the movement according to the users intention. Results: The proposed HMIR showed an accuracy between 76% to 83% for lower-limb muscles, and 71% to 77% for trunk muscles to classify motor classes of lower-limb movements. Experimental results of the controller showed that the admittance controller proposed here offers knee support in 50% of the gait cycle and assists correctly the motion classes. Conclusion: The robotic knee exoskeleton introduced here is an alternative method to empower knee movements using sEMG signals from lower-limb and trunk muscles.
Fil: Villa Parra, Ana Cecilia. Universidade Federal do Espírito Santo; Brasil. Universidad Politécnica Salesiana; Ecuador
Fil: Delisle Rodriguez, Denis. Universidade Federal do Espírito Santo; Brasil. Universidad de Oriente; Cuba
Fil: Botelho, Thomaz. Universidade Federal do Espírito Santo; Brasil
Fil: Mayor, John Jairo Villarejo. Universidade Federal do Paraná; Brasil
Fil: Delis, Alberto López. Universidad de Oriente; Cuba
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Neto, Anselmo Frizera. Universidade Federal do Espírito Santo; Brasil
Fil: Bastos, Teodiano Freire. Universidade Federal do Espírito Santo; Brasil - Materia
-
ADMITTANCE CONTROL
ELECTROMYOGRAPHY
ROBOTIC KNEE EXOSKELETON
TRUNK MUSCLES
USER INTENTION RECOGNITION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89234
Ver los metadatos del registro completo
id |
CONICETDig_65e7ab0d5157283068096db67f80f21c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89234 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMGVilla Parra, Ana CeciliaDelisle Rodriguez, DenisBotelho, ThomazMayor, John Jairo VillarejoDelis, Alberto LópezCarelli Albarracin, Ricardo OscarNeto, Anselmo FrizeraBastos, Teodiano FreireADMITTANCE CONTROLELECTROMYOGRAPHYROBOTIC KNEE EXOSKELETONTRUNK MUSCLESUSER INTENTION RECOGNITIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Introduction: This work presents the development of a novel robotic knee exoskeleton controlled by motion intention based on sEMG, which uses admittance control to assist people with reduced mobility and improve their locomotion. Clinical research remark that these devices working in constant interaction with the neuromuscular and skeletal human system improves functional compensation and rehabilitation. Hence, the users become an active part of the training/rehabilitation, facilitating their involvement and improving their neural plasticity. For recognition of the lower-limb motion intention and discrimination of knee movements, sEMG from both lower-limb and trunk are used, which implies a new approach to control robotic assistive devices. Methods: A control system that includes a stage for human-motion intention recognition (HMIR), based on techniques to classify motion classes related to knee joint were developed. For translation of the user’s intention to a desired state for the robotic knee exoskeleton, the system also includes a finite state machine and admittance, velocity and trajectory controllers with a function that allows stopping the movement according to the users intention. Results: The proposed HMIR showed an accuracy between 76% to 83% for lower-limb muscles, and 71% to 77% for trunk muscles to classify motor classes of lower-limb movements. Experimental results of the controller showed that the admittance controller proposed here offers knee support in 50% of the gait cycle and assists correctly the motion classes. Conclusion: The robotic knee exoskeleton introduced here is an alternative method to empower knee movements using sEMG signals from lower-limb and trunk muscles.Fil: Villa Parra, Ana Cecilia. Universidade Federal do Espírito Santo; Brasil. Universidad Politécnica Salesiana; EcuadorFil: Delisle Rodriguez, Denis. Universidade Federal do Espírito Santo; Brasil. Universidad de Oriente; CubaFil: Botelho, Thomaz. Universidade Federal do Espírito Santo; BrasilFil: Mayor, John Jairo Villarejo. Universidade Federal do Paraná; BrasilFil: Delis, Alberto López. Universidad de Oriente; CubaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Neto, Anselmo Frizera. Universidade Federal do Espírito Santo; BrasilFil: Bastos, Teodiano Freire. Universidade Federal do Espírito Santo; BrasilSociedade Brasileira de Engenharia Biomédica2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89234Villa Parra, Ana Cecilia; Delisle Rodriguez, Denis; Botelho, Thomaz; Mayor, John Jairo Villarejo; Delis, Alberto López; et al.; Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG; Sociedade Brasileira de Engenharia Biomédica; Research on Biomedical Engineering; 34; 3; 9-2018; 198-2102446-47322446-4740CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1590/2446-4740.07417info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/p4hpq5info:eu-repo/semantics/altIdentifier/url/https://www.rbejournal.org/article/doi/10.1590/2446-4740.07417info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:32Zoai:ri.conicet.gov.ar:11336/89234instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:32.501CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG |
title |
Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG |
spellingShingle |
Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG Villa Parra, Ana Cecilia ADMITTANCE CONTROL ELECTROMYOGRAPHY ROBOTIC KNEE EXOSKELETON TRUNK MUSCLES USER INTENTION RECOGNITION |
title_short |
Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG |
title_full |
Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG |
title_fullStr |
Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG |
title_full_unstemmed |
Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG |
title_sort |
Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG |
dc.creator.none.fl_str_mv |
Villa Parra, Ana Cecilia Delisle Rodriguez, Denis Botelho, Thomaz Mayor, John Jairo Villarejo Delis, Alberto López Carelli Albarracin, Ricardo Oscar Neto, Anselmo Frizera Bastos, Teodiano Freire |
author |
Villa Parra, Ana Cecilia |
author_facet |
Villa Parra, Ana Cecilia Delisle Rodriguez, Denis Botelho, Thomaz Mayor, John Jairo Villarejo Delis, Alberto López Carelli Albarracin, Ricardo Oscar Neto, Anselmo Frizera Bastos, Teodiano Freire |
author_role |
author |
author2 |
Delisle Rodriguez, Denis Botelho, Thomaz Mayor, John Jairo Villarejo Delis, Alberto López Carelli Albarracin, Ricardo Oscar Neto, Anselmo Frizera Bastos, Teodiano Freire |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
ADMITTANCE CONTROL ELECTROMYOGRAPHY ROBOTIC KNEE EXOSKELETON TRUNK MUSCLES USER INTENTION RECOGNITION |
topic |
ADMITTANCE CONTROL ELECTROMYOGRAPHY ROBOTIC KNEE EXOSKELETON TRUNK MUSCLES USER INTENTION RECOGNITION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Introduction: This work presents the development of a novel robotic knee exoskeleton controlled by motion intention based on sEMG, which uses admittance control to assist people with reduced mobility and improve their locomotion. Clinical research remark that these devices working in constant interaction with the neuromuscular and skeletal human system improves functional compensation and rehabilitation. Hence, the users become an active part of the training/rehabilitation, facilitating their involvement and improving their neural plasticity. For recognition of the lower-limb motion intention and discrimination of knee movements, sEMG from both lower-limb and trunk are used, which implies a new approach to control robotic assistive devices. Methods: A control system that includes a stage for human-motion intention recognition (HMIR), based on techniques to classify motion classes related to knee joint were developed. For translation of the user’s intention to a desired state for the robotic knee exoskeleton, the system also includes a finite state machine and admittance, velocity and trajectory controllers with a function that allows stopping the movement according to the users intention. Results: The proposed HMIR showed an accuracy between 76% to 83% for lower-limb muscles, and 71% to 77% for trunk muscles to classify motor classes of lower-limb movements. Experimental results of the controller showed that the admittance controller proposed here offers knee support in 50% of the gait cycle and assists correctly the motion classes. Conclusion: The robotic knee exoskeleton introduced here is an alternative method to empower knee movements using sEMG signals from lower-limb and trunk muscles. Fil: Villa Parra, Ana Cecilia. Universidade Federal do Espírito Santo; Brasil. Universidad Politécnica Salesiana; Ecuador Fil: Delisle Rodriguez, Denis. Universidade Federal do Espírito Santo; Brasil. Universidad de Oriente; Cuba Fil: Botelho, Thomaz. Universidade Federal do Espírito Santo; Brasil Fil: Mayor, John Jairo Villarejo. Universidade Federal do Paraná; Brasil Fil: Delis, Alberto López. Universidad de Oriente; Cuba Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Neto, Anselmo Frizera. Universidade Federal do Espírito Santo; Brasil Fil: Bastos, Teodiano Freire. Universidade Federal do Espírito Santo; Brasil |
description |
Introduction: This work presents the development of a novel robotic knee exoskeleton controlled by motion intention based on sEMG, which uses admittance control to assist people with reduced mobility and improve their locomotion. Clinical research remark that these devices working in constant interaction with the neuromuscular and skeletal human system improves functional compensation and rehabilitation. Hence, the users become an active part of the training/rehabilitation, facilitating their involvement and improving their neural plasticity. For recognition of the lower-limb motion intention and discrimination of knee movements, sEMG from both lower-limb and trunk are used, which implies a new approach to control robotic assistive devices. Methods: A control system that includes a stage for human-motion intention recognition (HMIR), based on techniques to classify motion classes related to knee joint were developed. For translation of the user’s intention to a desired state for the robotic knee exoskeleton, the system also includes a finite state machine and admittance, velocity and trajectory controllers with a function that allows stopping the movement according to the users intention. Results: The proposed HMIR showed an accuracy between 76% to 83% for lower-limb muscles, and 71% to 77% for trunk muscles to classify motor classes of lower-limb movements. Experimental results of the controller showed that the admittance controller proposed here offers knee support in 50% of the gait cycle and assists correctly the motion classes. Conclusion: The robotic knee exoskeleton introduced here is an alternative method to empower knee movements using sEMG signals from lower-limb and trunk muscles. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89234 Villa Parra, Ana Cecilia; Delisle Rodriguez, Denis; Botelho, Thomaz; Mayor, John Jairo Villarejo; Delis, Alberto López; et al.; Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG; Sociedade Brasileira de Engenharia Biomédica; Research on Biomedical Engineering; 34; 3; 9-2018; 198-210 2446-4732 2446-4740 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/89234 |
identifier_str_mv |
Villa Parra, Ana Cecilia; Delisle Rodriguez, Denis; Botelho, Thomaz; Mayor, John Jairo Villarejo; Delis, Alberto López; et al.; Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG; Sociedade Brasileira de Engenharia Biomédica; Research on Biomedical Engineering; 34; 3; 9-2018; 198-210 2446-4732 2446-4740 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1590/2446-4740.07417 info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/p4hpq5 info:eu-repo/semantics/altIdentifier/url/https://www.rbejournal.org/article/doi/10.1590/2446-4740.07417 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Engenharia Biomédica |
publisher.none.fl_str_mv |
Sociedade Brasileira de Engenharia Biomédica |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613218243182592 |
score |
13.070432 |