Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle
- Autores
- Romera, Sonia; Puntel, Mariana; Quattrocchi, Valeria; del Medico Zajac, Maria Paula; Zamorano, Patricia Ines; Blanco Viera, Javier; Carrillo, Consuelo; Chowdhury, Shafiqul; Borca, Manuel V.; Sadir, Ana M.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- BACKGROUND: Bovine herpesvirus type 1 (BoHV-1) is the causative agent of respiratory and genital tract infections; causing a high economic loss in all continents. Use of marker vaccines in IBR eradication programs is widely accepted since it allows for protection of the animals against the disease while adding the possibility of differentiating vaccinated from infected animals.The aim of the present study was the development and evaluation of safety and efficacy of a glycoprotein E-deleted (gE-) BoHV-1 marker vaccine strain (BoHV-1ΔgEβgal) generated by homologous recombination, replacing the viral gE gene with the β-galactosidase (βgal) gene. RESULTS: In vitro growth kinetics of the BoHV-1ΔgEβgal virus was similar to BoHV-1 LA. The immune response triggered by the new recombinant strain in cattle was characterized both as live attenuated vaccine (LAV) and as an inactivated vaccine. BoHV-1ΔgEβgal was highly immunogenic in both formulations, inducing specific humoral and cellular immune responses. Antibody titers found in animals vaccinated with the inactivated vaccine based on BoHV-1ΔgEβgal was similar to the titers found for the control vaccine (BoHV-1 LA). In the same way, titers of inactivated vaccine groups were significantly higher than any of the LAV immunized groups, independently of the inoculation route (p < 0.001). Levels of IFN-γ were significantly higher (p < 0.001) in those animals that received the LAV compared to those that received the inactivated vaccine. BoHV-1ΔgEβgal exhibited an evident attenuation when administered as a LAV; no virus was detected in nasal secretions of vaccinated or sentinel animals during the post-vaccination period. BoHV-1ΔgEβgal, when used in either formulation, elicited an efficient immune response that protected animals against challenge with virulent wild-type BoHV-1. Also, the deletion of the gE gene served as an immunological marker to differentiate vaccinated animals from infected animals. All animals vaccinated with the BoHV-1ΔgE βgal strain were protected against disease after challenge and shed significantly less virus than control calves, regardless of the route and formulation they were inoculated. CONCLUSIONS: Based on its attenuation, immunogenicity and protective effect after challenge, BoHV-1ΔgEβgal virus is an efficient and safe vaccine candidate when used either as inactivated or as live attenuated forms.
Fil: Romera, Sonia. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina. Universidad del Salvador; Argentina
Fil: Puntel, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina
Fil: Quattrocchi, Valeria. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina
Fil: del Medico Zajac, Maria Paula. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina
Fil: Zamorano, Patricia Ines. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina. Universidad del Salvador; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Blanco Viera, Javier. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina
Fil: Carrillo, Consuelo. USDA. Plum Island Animal Disease Center; Estados Unidos
Fil: Chowdhury, Shafiqul. Louisiana State University. Department of Pathobiological Sciences; Estados Unidos
Fil: Borca, Manuel V.. USDA. Plum Island Animal Disease Center; Estados Unidos
Fil: Sadir, Ana M.. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina. Universidad del Salvador; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Bovine Herpesvirus
vaccination
Recombinant marker vaccine
Attenuated vaccine - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8540
Ver los metadatos del registro completo
id |
CONICETDig_657c5ee4a7cb6c286de9154861f19ec6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8540 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattleRomera, SoniaPuntel, MarianaQuattrocchi, Valeriadel Medico Zajac, Maria PaulaZamorano, Patricia InesBlanco Viera, JavierCarrillo, ConsueloChowdhury, ShafiqulBorca, Manuel V.Sadir, Ana M.Bovine HerpesvirusvaccinationRecombinant marker vaccineAttenuated vaccinehttps://purl.org/becyt/ford/4.3https://purl.org/becyt/ford/4https://purl.org/becyt/ford/4.3https://purl.org/becyt/ford/4BACKGROUND: Bovine herpesvirus type 1 (BoHV-1) is the causative agent of respiratory and genital tract infections; causing a high economic loss in all continents. Use of marker vaccines in IBR eradication programs is widely accepted since it allows for protection of the animals against the disease while adding the possibility of differentiating vaccinated from infected animals.The aim of the present study was the development and evaluation of safety and efficacy of a glycoprotein E-deleted (gE-) BoHV-1 marker vaccine strain (BoHV-1ΔgEβgal) generated by homologous recombination, replacing the viral gE gene with the β-galactosidase (βgal) gene. RESULTS: In vitro growth kinetics of the BoHV-1ΔgEβgal virus was similar to BoHV-1 LA. The immune response triggered by the new recombinant strain in cattle was characterized both as live attenuated vaccine (LAV) and as an inactivated vaccine. BoHV-1ΔgEβgal was highly immunogenic in both formulations, inducing specific humoral and cellular immune responses. Antibody titers found in animals vaccinated with the inactivated vaccine based on BoHV-1ΔgEβgal was similar to the titers found for the control vaccine (BoHV-1 LA). In the same way, titers of inactivated vaccine groups were significantly higher than any of the LAV immunized groups, independently of the inoculation route (p < 0.001). Levels of IFN-γ were significantly higher (p < 0.001) in those animals that received the LAV compared to those that received the inactivated vaccine. BoHV-1ΔgEβgal exhibited an evident attenuation when administered as a LAV; no virus was detected in nasal secretions of vaccinated or sentinel animals during the post-vaccination period. BoHV-1ΔgEβgal, when used in either formulation, elicited an efficient immune response that protected animals against challenge with virulent wild-type BoHV-1. Also, the deletion of the gE gene served as an immunological marker to differentiate vaccinated animals from infected animals. All animals vaccinated with the BoHV-1ΔgE βgal strain were protected against disease after challenge and shed significantly less virus than control calves, regardless of the route and formulation they were inoculated. CONCLUSIONS: Based on its attenuation, immunogenicity and protective effect after challenge, BoHV-1ΔgEβgal virus is an efficient and safe vaccine candidate when used either as inactivated or as live attenuated forms.Fil: Romera, Sonia. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina. Universidad del Salvador; ArgentinaFil: Puntel, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Quattrocchi, Valeria. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; ArgentinaFil: del Medico Zajac, Maria Paula. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; ArgentinaFil: Zamorano, Patricia Ines. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina. Universidad del Salvador; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Blanco Viera, Javier. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; ArgentinaFil: Carrillo, Consuelo. USDA. Plum Island Animal Disease Center; Estados UnidosFil: Chowdhury, Shafiqul. Louisiana State University. Department of Pathobiological Sciences; Estados UnidosFil: Borca, Manuel V.. USDA. Plum Island Animal Disease Center; Estados UnidosFil: Sadir, Ana M.. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina. Universidad del Salvador; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaBiomed Central2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8540Romera, Sonia; Puntel, Mariana; Quattrocchi, Valeria; del Medico Zajac, Maria Paula; Zamorano, Patricia Ines; et al.; Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle; Biomed Central; BMC Veterinary Research; 10; 1-2014; 1-121746-6148enginfo:eu-repo/semantics/altIdentifier/url/https://bmcvetres.biomedcentral.com/articles/10.1186/1746-6148-10-8info:eu-repo/semantics/altIdentifier/doi/10.1186/1746-6148-10-8info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896737/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:33Zoai:ri.conicet.gov.ar:11336/8540instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:33.755CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle |
title |
Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle |
spellingShingle |
Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle Romera, Sonia Bovine Herpesvirus vaccination Recombinant marker vaccine Attenuated vaccine |
title_short |
Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle |
title_full |
Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle |
title_fullStr |
Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle |
title_full_unstemmed |
Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle |
title_sort |
Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle |
dc.creator.none.fl_str_mv |
Romera, Sonia Puntel, Mariana Quattrocchi, Valeria del Medico Zajac, Maria Paula Zamorano, Patricia Ines Blanco Viera, Javier Carrillo, Consuelo Chowdhury, Shafiqul Borca, Manuel V. Sadir, Ana M. |
author |
Romera, Sonia |
author_facet |
Romera, Sonia Puntel, Mariana Quattrocchi, Valeria del Medico Zajac, Maria Paula Zamorano, Patricia Ines Blanco Viera, Javier Carrillo, Consuelo Chowdhury, Shafiqul Borca, Manuel V. Sadir, Ana M. |
author_role |
author |
author2 |
Puntel, Mariana Quattrocchi, Valeria del Medico Zajac, Maria Paula Zamorano, Patricia Ines Blanco Viera, Javier Carrillo, Consuelo Chowdhury, Shafiqul Borca, Manuel V. Sadir, Ana M. |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
Bovine Herpesvirus vaccination Recombinant marker vaccine Attenuated vaccine |
topic |
Bovine Herpesvirus vaccination Recombinant marker vaccine Attenuated vaccine |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.3 https://purl.org/becyt/ford/4 https://purl.org/becyt/ford/4.3 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
BACKGROUND: Bovine herpesvirus type 1 (BoHV-1) is the causative agent of respiratory and genital tract infections; causing a high economic loss in all continents. Use of marker vaccines in IBR eradication programs is widely accepted since it allows for protection of the animals against the disease while adding the possibility of differentiating vaccinated from infected animals.The aim of the present study was the development and evaluation of safety and efficacy of a glycoprotein E-deleted (gE-) BoHV-1 marker vaccine strain (BoHV-1ΔgEβgal) generated by homologous recombination, replacing the viral gE gene with the β-galactosidase (βgal) gene. RESULTS: In vitro growth kinetics of the BoHV-1ΔgEβgal virus was similar to BoHV-1 LA. The immune response triggered by the new recombinant strain in cattle was characterized both as live attenuated vaccine (LAV) and as an inactivated vaccine. BoHV-1ΔgEβgal was highly immunogenic in both formulations, inducing specific humoral and cellular immune responses. Antibody titers found in animals vaccinated with the inactivated vaccine based on BoHV-1ΔgEβgal was similar to the titers found for the control vaccine (BoHV-1 LA). In the same way, titers of inactivated vaccine groups were significantly higher than any of the LAV immunized groups, independently of the inoculation route (p < 0.001). Levels of IFN-γ were significantly higher (p < 0.001) in those animals that received the LAV compared to those that received the inactivated vaccine. BoHV-1ΔgEβgal exhibited an evident attenuation when administered as a LAV; no virus was detected in nasal secretions of vaccinated or sentinel animals during the post-vaccination period. BoHV-1ΔgEβgal, when used in either formulation, elicited an efficient immune response that protected animals against challenge with virulent wild-type BoHV-1. Also, the deletion of the gE gene served as an immunological marker to differentiate vaccinated animals from infected animals. All animals vaccinated with the BoHV-1ΔgE βgal strain were protected against disease after challenge and shed significantly less virus than control calves, regardless of the route and formulation they were inoculated. CONCLUSIONS: Based on its attenuation, immunogenicity and protective effect after challenge, BoHV-1ΔgEβgal virus is an efficient and safe vaccine candidate when used either as inactivated or as live attenuated forms. Fil: Romera, Sonia. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina. Universidad del Salvador; Argentina Fil: Puntel, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina Fil: Quattrocchi, Valeria. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina Fil: del Medico Zajac, Maria Paula. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina Fil: Zamorano, Patricia Ines. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina. Universidad del Salvador; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Blanco Viera, Javier. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina Fil: Carrillo, Consuelo. USDA. Plum Island Animal Disease Center; Estados Unidos Fil: Chowdhury, Shafiqul. Louisiana State University. Department of Pathobiological Sciences; Estados Unidos Fil: Borca, Manuel V.. USDA. Plum Island Animal Disease Center; Estados Unidos Fil: Sadir, Ana M.. Instituto Nacional de Tecnologia Agropecuaria. Centro Nacional de Investigaciones Agropecuarias. Centro de Investigación de Ciencias Veterinarias y Agronomicas; Argentina. Universidad del Salvador; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
BACKGROUND: Bovine herpesvirus type 1 (BoHV-1) is the causative agent of respiratory and genital tract infections; causing a high economic loss in all continents. Use of marker vaccines in IBR eradication programs is widely accepted since it allows for protection of the animals against the disease while adding the possibility of differentiating vaccinated from infected animals.The aim of the present study was the development and evaluation of safety and efficacy of a glycoprotein E-deleted (gE-) BoHV-1 marker vaccine strain (BoHV-1ΔgEβgal) generated by homologous recombination, replacing the viral gE gene with the β-galactosidase (βgal) gene. RESULTS: In vitro growth kinetics of the BoHV-1ΔgEβgal virus was similar to BoHV-1 LA. The immune response triggered by the new recombinant strain in cattle was characterized both as live attenuated vaccine (LAV) and as an inactivated vaccine. BoHV-1ΔgEβgal was highly immunogenic in both formulations, inducing specific humoral and cellular immune responses. Antibody titers found in animals vaccinated with the inactivated vaccine based on BoHV-1ΔgEβgal was similar to the titers found for the control vaccine (BoHV-1 LA). In the same way, titers of inactivated vaccine groups were significantly higher than any of the LAV immunized groups, independently of the inoculation route (p < 0.001). Levels of IFN-γ were significantly higher (p < 0.001) in those animals that received the LAV compared to those that received the inactivated vaccine. BoHV-1ΔgEβgal exhibited an evident attenuation when administered as a LAV; no virus was detected in nasal secretions of vaccinated or sentinel animals during the post-vaccination period. BoHV-1ΔgEβgal, when used in either formulation, elicited an efficient immune response that protected animals against challenge with virulent wild-type BoHV-1. Also, the deletion of the gE gene served as an immunological marker to differentiate vaccinated animals from infected animals. All animals vaccinated with the BoHV-1ΔgE βgal strain were protected against disease after challenge and shed significantly less virus than control calves, regardless of the route and formulation they were inoculated. CONCLUSIONS: Based on its attenuation, immunogenicity and protective effect after challenge, BoHV-1ΔgEβgal virus is an efficient and safe vaccine candidate when used either as inactivated or as live attenuated forms. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8540 Romera, Sonia; Puntel, Mariana; Quattrocchi, Valeria; del Medico Zajac, Maria Paula; Zamorano, Patricia Ines; et al.; Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle; Biomed Central; BMC Veterinary Research; 10; 1-2014; 1-12 1746-6148 |
url |
http://hdl.handle.net/11336/8540 |
identifier_str_mv |
Romera, Sonia; Puntel, Mariana; Quattrocchi, Valeria; del Medico Zajac, Maria Paula; Zamorano, Patricia Ines; et al.; Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle; Biomed Central; BMC Veterinary Research; 10; 1-2014; 1-12 1746-6148 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://bmcvetres.biomedcentral.com/articles/10.1186/1746-6148-10-8 info:eu-repo/semantics/altIdentifier/doi/10.1186/1746-6148-10-8 info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896737/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Biomed Central |
publisher.none.fl_str_mv |
Biomed Central |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269862530908160 |
score |
13.13397 |