Low perturbation limit decoherence analyzed by scaling the Double Quantum Hamiltonian

Autores
Sánchez, C. M.; Pastawski, Horacio Miguel; Chattah, Ana Karina
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
By varying the magnitude of the effective interaction between spins in relation to the perturbations, we study the decoherence behavior in a connected proton system. Making use of the Magnus expansion, we introduce a NMR pulse sequence that generates an average Hamiltonian with Double Quantum terms multiplied by a scaling factor, δ, with the possibility to take positive and negative values. The performance of the pulse sequence for different values of the scaling factors was validated in polycrystalline adamantane, by observing the evolution of the polarization. A time reversal procedure, accessible through the change of sign in the controlled Hamiltonian, was necessary to observe multiple quantum coherences. The spin counting develops a characteristic growth in two species of clusters for the scaled time. The influence of the scaling factor on the reversibility was observed through the behavior of the Loschmidt echoes, which decayed faster as the scaling factor increases. From the analysis of dynamics and its reversibility, we extracted characteristic times for the spin diffusion, T2 δ and the intrinsic decoherence decay, T3 δ for each scaling factor δ, and perturbation time scale, TΣ. Observing the dependence of reversibility vs. perturbation rates, both normalized with the spin diffusion rate, we find that in the limit of low perturbations, T2 δ/T3 δ deviates from the linear dependence on T2 δ/TΣ that corresponds to strong perturbation. The asymptotic value T2/T3≈0.15 as T2 δ/TΣ vanishes, gives evidence that the main source of irreversibility is the intrinsic decoherence associated to the chaotic many-body dynamics of the system.
Fil: Sánchez, C. M.. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Pastawski, Horacio Miguel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Chattah, Ana Karina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Materia
DECOHERENCE
DOUBLE QUANTUM
LOSCHMIDT ECHO
SCALING
SPIN SYSTEMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/226343

id CONICETDig_6532bd158afa046ecc77fee4c5032fe1
oai_identifier_str oai:ri.conicet.gov.ar:11336/226343
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Low perturbation limit decoherence analyzed by scaling the Double Quantum HamiltonianSánchez, C. M.Pastawski, Horacio MiguelChattah, Ana KarinaDECOHERENCEDOUBLE QUANTUMLOSCHMIDT ECHOSCALINGSPIN SYSTEMShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1By varying the magnitude of the effective interaction between spins in relation to the perturbations, we study the decoherence behavior in a connected proton system. Making use of the Magnus expansion, we introduce a NMR pulse sequence that generates an average Hamiltonian with Double Quantum terms multiplied by a scaling factor, δ, with the possibility to take positive and negative values. The performance of the pulse sequence for different values of the scaling factors was validated in polycrystalline adamantane, by observing the evolution of the polarization. A time reversal procedure, accessible through the change of sign in the controlled Hamiltonian, was necessary to observe multiple quantum coherences. The spin counting develops a characteristic growth in two species of clusters for the scaled time. The influence of the scaling factor on the reversibility was observed through the behavior of the Loschmidt echoes, which decayed faster as the scaling factor increases. From the analysis of dynamics and its reversibility, we extracted characteristic times for the spin diffusion, T2 δ and the intrinsic decoherence decay, T3 δ for each scaling factor δ, and perturbation time scale, TΣ. Observing the dependence of reversibility vs. perturbation rates, both normalized with the spin diffusion rate, we find that in the limit of low perturbations, T2 δ/T3 δ deviates from the linear dependence on T2 δ/TΣ that corresponds to strong perturbation. The asymptotic value T2/T3≈0.15 as T2 δ/TΣ vanishes, gives evidence that the main source of irreversibility is the intrinsic decoherence associated to the chaotic many-body dynamics of the system.Fil: Sánchez, C. M.. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Pastawski, Horacio Miguel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Chattah, Ana Karina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaElsevier2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/226343Sánchez, C. M.; Pastawski, Horacio Miguel; Chattah, Ana Karina; Low perturbation limit decoherence analyzed by scaling the Double Quantum Hamiltonian; Elsevier; Journal of Magnetic Resonance Open; 16-17; 12-2023; 1-92666-4410CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2666441023000122info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmro.2023.100104info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:06:03Zoai:ri.conicet.gov.ar:11336/226343instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:06:04.025CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Low perturbation limit decoherence analyzed by scaling the Double Quantum Hamiltonian
title Low perturbation limit decoherence analyzed by scaling the Double Quantum Hamiltonian
spellingShingle Low perturbation limit decoherence analyzed by scaling the Double Quantum Hamiltonian
Sánchez, C. M.
DECOHERENCE
DOUBLE QUANTUM
LOSCHMIDT ECHO
SCALING
SPIN SYSTEMS
title_short Low perturbation limit decoherence analyzed by scaling the Double Quantum Hamiltonian
title_full Low perturbation limit decoherence analyzed by scaling the Double Quantum Hamiltonian
title_fullStr Low perturbation limit decoherence analyzed by scaling the Double Quantum Hamiltonian
title_full_unstemmed Low perturbation limit decoherence analyzed by scaling the Double Quantum Hamiltonian
title_sort Low perturbation limit decoherence analyzed by scaling the Double Quantum Hamiltonian
dc.creator.none.fl_str_mv Sánchez, C. M.
Pastawski, Horacio Miguel
Chattah, Ana Karina
author Sánchez, C. M.
author_facet Sánchez, C. M.
Pastawski, Horacio Miguel
Chattah, Ana Karina
author_role author
author2 Pastawski, Horacio Miguel
Chattah, Ana Karina
author2_role author
author
dc.subject.none.fl_str_mv DECOHERENCE
DOUBLE QUANTUM
LOSCHMIDT ECHO
SCALING
SPIN SYSTEMS
topic DECOHERENCE
DOUBLE QUANTUM
LOSCHMIDT ECHO
SCALING
SPIN SYSTEMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv By varying the magnitude of the effective interaction between spins in relation to the perturbations, we study the decoherence behavior in a connected proton system. Making use of the Magnus expansion, we introduce a NMR pulse sequence that generates an average Hamiltonian with Double Quantum terms multiplied by a scaling factor, δ, with the possibility to take positive and negative values. The performance of the pulse sequence for different values of the scaling factors was validated in polycrystalline adamantane, by observing the evolution of the polarization. A time reversal procedure, accessible through the change of sign in the controlled Hamiltonian, was necessary to observe multiple quantum coherences. The spin counting develops a characteristic growth in two species of clusters for the scaled time. The influence of the scaling factor on the reversibility was observed through the behavior of the Loschmidt echoes, which decayed faster as the scaling factor increases. From the analysis of dynamics and its reversibility, we extracted characteristic times for the spin diffusion, T2 δ and the intrinsic decoherence decay, T3 δ for each scaling factor δ, and perturbation time scale, TΣ. Observing the dependence of reversibility vs. perturbation rates, both normalized with the spin diffusion rate, we find that in the limit of low perturbations, T2 δ/T3 δ deviates from the linear dependence on T2 δ/TΣ that corresponds to strong perturbation. The asymptotic value T2/T3≈0.15 as T2 δ/TΣ vanishes, gives evidence that the main source of irreversibility is the intrinsic decoherence associated to the chaotic many-body dynamics of the system.
Fil: Sánchez, C. M.. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Pastawski, Horacio Miguel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Chattah, Ana Karina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
description By varying the magnitude of the effective interaction between spins in relation to the perturbations, we study the decoherence behavior in a connected proton system. Making use of the Magnus expansion, we introduce a NMR pulse sequence that generates an average Hamiltonian with Double Quantum terms multiplied by a scaling factor, δ, with the possibility to take positive and negative values. The performance of the pulse sequence for different values of the scaling factors was validated in polycrystalline adamantane, by observing the evolution of the polarization. A time reversal procedure, accessible through the change of sign in the controlled Hamiltonian, was necessary to observe multiple quantum coherences. The spin counting develops a characteristic growth in two species of clusters for the scaled time. The influence of the scaling factor on the reversibility was observed through the behavior of the Loschmidt echoes, which decayed faster as the scaling factor increases. From the analysis of dynamics and its reversibility, we extracted characteristic times for the spin diffusion, T2 δ and the intrinsic decoherence decay, T3 δ for each scaling factor δ, and perturbation time scale, TΣ. Observing the dependence of reversibility vs. perturbation rates, both normalized with the spin diffusion rate, we find that in the limit of low perturbations, T2 δ/T3 δ deviates from the linear dependence on T2 δ/TΣ that corresponds to strong perturbation. The asymptotic value T2/T3≈0.15 as T2 δ/TΣ vanishes, gives evidence that the main source of irreversibility is the intrinsic decoherence associated to the chaotic many-body dynamics of the system.
publishDate 2023
dc.date.none.fl_str_mv 2023-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/226343
Sánchez, C. M.; Pastawski, Horacio Miguel; Chattah, Ana Karina; Low perturbation limit decoherence analyzed by scaling the Double Quantum Hamiltonian; Elsevier; Journal of Magnetic Resonance Open; 16-17; 12-2023; 1-9
2666-4410
CONICET Digital
CONICET
url http://hdl.handle.net/11336/226343
identifier_str_mv Sánchez, C. M.; Pastawski, Horacio Miguel; Chattah, Ana Karina; Low perturbation limit decoherence analyzed by scaling the Double Quantum Hamiltonian; Elsevier; Journal of Magnetic Resonance Open; 16-17; 12-2023; 1-9
2666-4410
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2666441023000122
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmro.2023.100104
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083203686727680
score 13.22299