Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps

Autores
Fernández, Lucas Jonatan; Pastawski, Horacio Miguel
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We develop and implement a model for decoherence in time-dependent transport. Inspired in a dynamical formulation of the Landauer-Büttiker equations, it boils down into a form of wave function that undergoes a smooth stochastic drift of the phase in a local basis, the quantum-drift (QD) model. This drift is nothing else but a local energy fluctuation. Unlike quantum-jumps (QJ) models, no jumps are present in the density as the evolution is unitary. As a first application, we address the transport through a resonant state |0〉 that undergoes decoherence. Its numerical resolution shows the equivalence with the decoherent steady-state transport in presence of a Büttiker's voltage probe. In order to test the dynamics we consider two many-spin systems, which are cases of experimental interest, where a local energy fluctuation is a natural phenomenon. A two-spin system is reduced to a two-level system (TLS) that oscillates among |0〉≡|↑↓〉 and |1〉≡|↓↑〉. We show that the QD model recovers not only the exponential damping of the oscillations in the low perturbation regime, but also the nontrivial bifurcation of the damping rates at a critical point, i.e., the quantum dynamical phase transition. We also address the spin-wave-like dynamics of local polarization in a spin chain. By averaging over Ns realizations, the QD solution has about half the dispersion respect to the mean dynamics than QJ. By evaluating the Loschmidt echo (LE), we find that the pure states |0〉≡|↑↓〉 and |1〉≡|↓↑〉 are quite robust against the local decoherence. In contrast, the LE, and hence coherence, decays faster when the system is in a superposition state (|↑↓〉±|↓↑〉)/2, which is consistent with the general trend recently observed in spin systems through NMR. Because of its simple implementation, the method is well suited to assess decoherent transport problems as well as to include decoherence in both one-body and many-body dynamics.
Fil: Fernández, Lucas Jonatan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Pastawski, Horacio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Materia
Dynamical Quantum Transport
Decoherence
Loschmidt Echo
Mesoscopic Echo
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/51182

id CONICETDig_50f911199b2a4de344318ba0f563510e
oai_identifier_str oai:ri.conicet.gov.ar:11336/51182
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumpsFernández, Lucas JonatanPastawski, Horacio MiguelDynamical Quantum TransportDecoherenceLoschmidt EchoMesoscopic Echohttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We develop and implement a model for decoherence in time-dependent transport. Inspired in a dynamical formulation of the Landauer-Büttiker equations, it boils down into a form of wave function that undergoes a smooth stochastic drift of the phase in a local basis, the quantum-drift (QD) model. This drift is nothing else but a local energy fluctuation. Unlike quantum-jumps (QJ) models, no jumps are present in the density as the evolution is unitary. As a first application, we address the transport through a resonant state |0〉 that undergoes decoherence. Its numerical resolution shows the equivalence with the decoherent steady-state transport in presence of a Büttiker's voltage probe. In order to test the dynamics we consider two many-spin systems, which are cases of experimental interest, where a local energy fluctuation is a natural phenomenon. A two-spin system is reduced to a two-level system (TLS) that oscillates among |0〉≡|↑↓〉 and |1〉≡|↓↑〉. We show that the QD model recovers not only the exponential damping of the oscillations in the low perturbation regime, but also the nontrivial bifurcation of the damping rates at a critical point, i.e., the quantum dynamical phase transition. We also address the spin-wave-like dynamics of local polarization in a spin chain. By averaging over Ns realizations, the QD solution has about half the dispersion respect to the mean dynamics than QJ. By evaluating the Loschmidt echo (LE), we find that the pure states |0〉≡|↑↓〉 and |1〉≡|↓↑〉 are quite robust against the local decoherence. In contrast, the LE, and hence coherence, decays faster when the system is in a superposition state (|↑↓〉±|↓↑〉)/2, which is consistent with the general trend recently observed in spin systems through NMR. Because of its simple implementation, the method is well suited to assess decoherent transport problems as well as to include decoherence in both one-body and many-body dynamics.Fil: Fernández, Lucas Jonatan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Pastawski, Horacio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaAmerican Physical Society2015-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51182Fernández, Lucas Jonatan; Pastawski, Horacio Miguel; Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 91; 2; 2-2015; 22117-221171050-2947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.91.022117info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.91.022117info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:12Zoai:ri.conicet.gov.ar:11336/51182instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:12.636CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps
title Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps
spellingShingle Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps
Fernández, Lucas Jonatan
Dynamical Quantum Transport
Decoherence
Loschmidt Echo
Mesoscopic Echo
title_short Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps
title_full Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps
title_fullStr Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps
title_full_unstemmed Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps
title_sort Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps
dc.creator.none.fl_str_mv Fernández, Lucas Jonatan
Pastawski, Horacio Miguel
author Fernández, Lucas Jonatan
author_facet Fernández, Lucas Jonatan
Pastawski, Horacio Miguel
author_role author
author2 Pastawski, Horacio Miguel
author2_role author
dc.subject.none.fl_str_mv Dynamical Quantum Transport
Decoherence
Loschmidt Echo
Mesoscopic Echo
topic Dynamical Quantum Transport
Decoherence
Loschmidt Echo
Mesoscopic Echo
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We develop and implement a model for decoherence in time-dependent transport. Inspired in a dynamical formulation of the Landauer-Büttiker equations, it boils down into a form of wave function that undergoes a smooth stochastic drift of the phase in a local basis, the quantum-drift (QD) model. This drift is nothing else but a local energy fluctuation. Unlike quantum-jumps (QJ) models, no jumps are present in the density as the evolution is unitary. As a first application, we address the transport through a resonant state |0〉 that undergoes decoherence. Its numerical resolution shows the equivalence with the decoherent steady-state transport in presence of a Büttiker's voltage probe. In order to test the dynamics we consider two many-spin systems, which are cases of experimental interest, where a local energy fluctuation is a natural phenomenon. A two-spin system is reduced to a two-level system (TLS) that oscillates among |0〉≡|↑↓〉 and |1〉≡|↓↑〉. We show that the QD model recovers not only the exponential damping of the oscillations in the low perturbation regime, but also the nontrivial bifurcation of the damping rates at a critical point, i.e., the quantum dynamical phase transition. We also address the spin-wave-like dynamics of local polarization in a spin chain. By averaging over Ns realizations, the QD solution has about half the dispersion respect to the mean dynamics than QJ. By evaluating the Loschmidt echo (LE), we find that the pure states |0〉≡|↑↓〉 and |1〉≡|↓↑〉 are quite robust against the local decoherence. In contrast, the LE, and hence coherence, decays faster when the system is in a superposition state (|↑↓〉±|↓↑〉)/2, which is consistent with the general trend recently observed in spin systems through NMR. Because of its simple implementation, the method is well suited to assess decoherent transport problems as well as to include decoherence in both one-body and many-body dynamics.
Fil: Fernández, Lucas Jonatan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Pastawski, Horacio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
description We develop and implement a model for decoherence in time-dependent transport. Inspired in a dynamical formulation of the Landauer-Büttiker equations, it boils down into a form of wave function that undergoes a smooth stochastic drift of the phase in a local basis, the quantum-drift (QD) model. This drift is nothing else but a local energy fluctuation. Unlike quantum-jumps (QJ) models, no jumps are present in the density as the evolution is unitary. As a first application, we address the transport through a resonant state |0〉 that undergoes decoherence. Its numerical resolution shows the equivalence with the decoherent steady-state transport in presence of a Büttiker's voltage probe. In order to test the dynamics we consider two many-spin systems, which are cases of experimental interest, where a local energy fluctuation is a natural phenomenon. A two-spin system is reduced to a two-level system (TLS) that oscillates among |0〉≡|↑↓〉 and |1〉≡|↓↑〉. We show that the QD model recovers not only the exponential damping of the oscillations in the low perturbation regime, but also the nontrivial bifurcation of the damping rates at a critical point, i.e., the quantum dynamical phase transition. We also address the spin-wave-like dynamics of local polarization in a spin chain. By averaging over Ns realizations, the QD solution has about half the dispersion respect to the mean dynamics than QJ. By evaluating the Loschmidt echo (LE), we find that the pure states |0〉≡|↑↓〉 and |1〉≡|↓↑〉 are quite robust against the local decoherence. In contrast, the LE, and hence coherence, decays faster when the system is in a superposition state (|↑↓〉±|↓↑〉)/2, which is consistent with the general trend recently observed in spin systems through NMR. Because of its simple implementation, the method is well suited to assess decoherent transport problems as well as to include decoherence in both one-body and many-body dynamics.
publishDate 2015
dc.date.none.fl_str_mv 2015-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/51182
Fernández, Lucas Jonatan; Pastawski, Horacio Miguel; Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 91; 2; 2-2015; 22117-22117
1050-2947
CONICET Digital
CONICET
url http://hdl.handle.net/11336/51182
identifier_str_mv Fernández, Lucas Jonatan; Pastawski, Horacio Miguel; Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 91; 2; 2-2015; 22117-22117
1050-2947
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.91.022117
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.91.022117
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613988828053504
score 13.070432