Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps
- Autores
- Fernández, Lucas Jonatan; Pastawski, Horacio Miguel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We develop and implement a model for decoherence in time-dependent transport. Inspired in a dynamical formulation of the Landauer-Büttiker equations, it boils down into a form of wave function that undergoes a smooth stochastic drift of the phase in a local basis, the quantum-drift (QD) model. This drift is nothing else but a local energy fluctuation. Unlike quantum-jumps (QJ) models, no jumps are present in the density as the evolution is unitary. As a first application, we address the transport through a resonant state |0〉 that undergoes decoherence. Its numerical resolution shows the equivalence with the decoherent steady-state transport in presence of a Büttiker's voltage probe. In order to test the dynamics we consider two many-spin systems, which are cases of experimental interest, where a local energy fluctuation is a natural phenomenon. A two-spin system is reduced to a two-level system (TLS) that oscillates among |0〉≡|↑↓〉 and |1〉≡|↓↑〉. We show that the QD model recovers not only the exponential damping of the oscillations in the low perturbation regime, but also the nontrivial bifurcation of the damping rates at a critical point, i.e., the quantum dynamical phase transition. We also address the spin-wave-like dynamics of local polarization in a spin chain. By averaging over Ns realizations, the QD solution has about half the dispersion respect to the mean dynamics than QJ. By evaluating the Loschmidt echo (LE), we find that the pure states |0〉≡|↑↓〉 and |1〉≡|↓↑〉 are quite robust against the local decoherence. In contrast, the LE, and hence coherence, decays faster when the system is in a superposition state (|↑↓〉±|↓↑〉)/2, which is consistent with the general trend recently observed in spin systems through NMR. Because of its simple implementation, the method is well suited to assess decoherent transport problems as well as to include decoherence in both one-body and many-body dynamics.
Fil: Fernández, Lucas Jonatan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Pastawski, Horacio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
Dynamical Quantum Transport
Decoherence
Loschmidt Echo
Mesoscopic Echo - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/51182
Ver los metadatos del registro completo
id |
CONICETDig_50f911199b2a4de344318ba0f563510e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/51182 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumpsFernández, Lucas JonatanPastawski, Horacio MiguelDynamical Quantum TransportDecoherenceLoschmidt EchoMesoscopic Echohttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We develop and implement a model for decoherence in time-dependent transport. Inspired in a dynamical formulation of the Landauer-Büttiker equations, it boils down into a form of wave function that undergoes a smooth stochastic drift of the phase in a local basis, the quantum-drift (QD) model. This drift is nothing else but a local energy fluctuation. Unlike quantum-jumps (QJ) models, no jumps are present in the density as the evolution is unitary. As a first application, we address the transport through a resonant state |0〉 that undergoes decoherence. Its numerical resolution shows the equivalence with the decoherent steady-state transport in presence of a Büttiker's voltage probe. In order to test the dynamics we consider two many-spin systems, which are cases of experimental interest, where a local energy fluctuation is a natural phenomenon. A two-spin system is reduced to a two-level system (TLS) that oscillates among |0〉≡|↑↓〉 and |1〉≡|↓↑〉. We show that the QD model recovers not only the exponential damping of the oscillations in the low perturbation regime, but also the nontrivial bifurcation of the damping rates at a critical point, i.e., the quantum dynamical phase transition. We also address the spin-wave-like dynamics of local polarization in a spin chain. By averaging over Ns realizations, the QD solution has about half the dispersion respect to the mean dynamics than QJ. By evaluating the Loschmidt echo (LE), we find that the pure states |0〉≡|↑↓〉 and |1〉≡|↓↑〉 are quite robust against the local decoherence. In contrast, the LE, and hence coherence, decays faster when the system is in a superposition state (|↑↓〉±|↓↑〉)/2, which is consistent with the general trend recently observed in spin systems through NMR. Because of its simple implementation, the method is well suited to assess decoherent transport problems as well as to include decoherence in both one-body and many-body dynamics.Fil: Fernández, Lucas Jonatan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Pastawski, Horacio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaAmerican Physical Society2015-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51182Fernández, Lucas Jonatan; Pastawski, Horacio Miguel; Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 91; 2; 2-2015; 22117-221171050-2947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.91.022117info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.91.022117info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:12Zoai:ri.conicet.gov.ar:11336/51182instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:12.636CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps |
title |
Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps |
spellingShingle |
Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps Fernández, Lucas Jonatan Dynamical Quantum Transport Decoherence Loschmidt Echo Mesoscopic Echo |
title_short |
Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps |
title_full |
Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps |
title_fullStr |
Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps |
title_full_unstemmed |
Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps |
title_sort |
Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps |
dc.creator.none.fl_str_mv |
Fernández, Lucas Jonatan Pastawski, Horacio Miguel |
author |
Fernández, Lucas Jonatan |
author_facet |
Fernández, Lucas Jonatan Pastawski, Horacio Miguel |
author_role |
author |
author2 |
Pastawski, Horacio Miguel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Dynamical Quantum Transport Decoherence Loschmidt Echo Mesoscopic Echo |
topic |
Dynamical Quantum Transport Decoherence Loschmidt Echo Mesoscopic Echo |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We develop and implement a model for decoherence in time-dependent transport. Inspired in a dynamical formulation of the Landauer-Büttiker equations, it boils down into a form of wave function that undergoes a smooth stochastic drift of the phase in a local basis, the quantum-drift (QD) model. This drift is nothing else but a local energy fluctuation. Unlike quantum-jumps (QJ) models, no jumps are present in the density as the evolution is unitary. As a first application, we address the transport through a resonant state |0〉 that undergoes decoherence. Its numerical resolution shows the equivalence with the decoherent steady-state transport in presence of a Büttiker's voltage probe. In order to test the dynamics we consider two many-spin systems, which are cases of experimental interest, where a local energy fluctuation is a natural phenomenon. A two-spin system is reduced to a two-level system (TLS) that oscillates among |0〉≡|↑↓〉 and |1〉≡|↓↑〉. We show that the QD model recovers not only the exponential damping of the oscillations in the low perturbation regime, but also the nontrivial bifurcation of the damping rates at a critical point, i.e., the quantum dynamical phase transition. We also address the spin-wave-like dynamics of local polarization in a spin chain. By averaging over Ns realizations, the QD solution has about half the dispersion respect to the mean dynamics than QJ. By evaluating the Loschmidt echo (LE), we find that the pure states |0〉≡|↑↓〉 and |1〉≡|↓↑〉 are quite robust against the local decoherence. In contrast, the LE, and hence coherence, decays faster when the system is in a superposition state (|↑↓〉±|↓↑〉)/2, which is consistent with the general trend recently observed in spin systems through NMR. Because of its simple implementation, the method is well suited to assess decoherent transport problems as well as to include decoherence in both one-body and many-body dynamics. Fil: Fernández, Lucas Jonatan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Pastawski, Horacio Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
We develop and implement a model for decoherence in time-dependent transport. Inspired in a dynamical formulation of the Landauer-Büttiker equations, it boils down into a form of wave function that undergoes a smooth stochastic drift of the phase in a local basis, the quantum-drift (QD) model. This drift is nothing else but a local energy fluctuation. Unlike quantum-jumps (QJ) models, no jumps are present in the density as the evolution is unitary. As a first application, we address the transport through a resonant state |0〉 that undergoes decoherence. Its numerical resolution shows the equivalence with the decoherent steady-state transport in presence of a Büttiker's voltage probe. In order to test the dynamics we consider two many-spin systems, which are cases of experimental interest, where a local energy fluctuation is a natural phenomenon. A two-spin system is reduced to a two-level system (TLS) that oscillates among |0〉≡|↑↓〉 and |1〉≡|↓↑〉. We show that the QD model recovers not only the exponential damping of the oscillations in the low perturbation regime, but also the nontrivial bifurcation of the damping rates at a critical point, i.e., the quantum dynamical phase transition. We also address the spin-wave-like dynamics of local polarization in a spin chain. By averaging over Ns realizations, the QD solution has about half the dispersion respect to the mean dynamics than QJ. By evaluating the Loschmidt echo (LE), we find that the pure states |0〉≡|↑↓〉 and |1〉≡|↓↑〉 are quite robust against the local decoherence. In contrast, the LE, and hence coherence, decays faster when the system is in a superposition state (|↑↓〉±|↓↑〉)/2, which is consistent with the general trend recently observed in spin systems through NMR. Because of its simple implementation, the method is well suited to assess decoherent transport problems as well as to include decoherence in both one-body and many-body dynamics. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/51182 Fernández, Lucas Jonatan; Pastawski, Horacio Miguel; Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 91; 2; 2-2015; 22117-22117 1050-2947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/51182 |
identifier_str_mv |
Fernández, Lucas Jonatan; Pastawski, Horacio Miguel; Decoherent time-dependent transport beyond the Landauer-Büttiker formulation: A quantum-drift alternative to quantum jumps; American Physical Society; Physical Review A: Atomic, Molecular and Optical Physics; 91; 2; 2-2015; 22117-22117 1050-2947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.91.022117 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.91.022117 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613988828053504 |
score |
13.070432 |