Wired Enzymes in mesoporous materials: A benchmark for fabricating biofuel cells

Autores
Catalano, Paolo Nicolás; Wolosiuk, Alejandro; Soler Illia, Galo Juan de Avila Arturo; Bellino, Martin Gonzalo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Evolution of fuel cells using metallic inorganic catalysts has led to the development of biofuel cells with potential applications in implantable devices. However, the main disadvantages in real world applications of enzymatic biofuel cells are short lifetime and low power density. Many efforts have been devoted to immobilize redox enzymes on surfaces to allow efficient electrical communication with electrodes and to provide an adequate habitat for biochemical activity. In this context, nanocavities of mesoporous materials offer a tailored environment for protein immobilization. Mesostructured platforms with high surface area and stability have been developed to enhance mass transport, charge transfer from biocatalysts to electrodes and enzyme stability, leading to biofuel cells with improved power density (up to 602 μW cm− 2 at physiological conditions) and overall performance (high stability after 30 h of continuous operation and after 10 days of storage). This review discusses recent developments using mesoporous materials as novel platforms for effective electronic charge transfer in the context of current and emerging technologies in enzymatic fuel cell research, emphasizing their practical implications and potential improvements leading to a major impact on medical science and portable electronics.
Fil: Catalano, Paolo Nicolás. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wolosiuk, Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soler Illia, Galo Juan de Avila Arturo. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bellino, Martin Gonzalo. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Mesoporous Materials
Enzymatic Biofuel Cells
Enzyme Wiring
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/38471

id CONICETDig_64ffea20dc1f246c034e10f71d79363f
oai_identifier_str oai:ri.conicet.gov.ar:11336/38471
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Wired Enzymes in mesoporous materials: A benchmark for fabricating biofuel cellsCatalano, Paolo NicolásWolosiuk, AlejandroSoler Illia, Galo Juan de Avila ArturoBellino, Martin GonzaloMesoporous MaterialsEnzymatic Biofuel CellsEnzyme Wiringhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Evolution of fuel cells using metallic inorganic catalysts has led to the development of biofuel cells with potential applications in implantable devices. However, the main disadvantages in real world applications of enzymatic biofuel cells are short lifetime and low power density. Many efforts have been devoted to immobilize redox enzymes on surfaces to allow efficient electrical communication with electrodes and to provide an adequate habitat for biochemical activity. In this context, nanocavities of mesoporous materials offer a tailored environment for protein immobilization. Mesostructured platforms with high surface area and stability have been developed to enhance mass transport, charge transfer from biocatalysts to electrodes and enzyme stability, leading to biofuel cells with improved power density (up to 602 μW cm− 2 at physiological conditions) and overall performance (high stability after 30 h of continuous operation and after 10 days of storage). This review discusses recent developments using mesoporous materials as novel platforms for effective electronic charge transfer in the context of current and emerging technologies in enzymatic fuel cell research, emphasizing their practical implications and potential improvements leading to a major impact on medical science and portable electronics.Fil: Catalano, Paolo Nicolás. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wolosiuk, Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Soler Illia, Galo Juan de Avila Arturo. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bellino, Martin Gonzalo. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science Sa2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38471Catalano, Paolo Nicolás; Wolosiuk, Alejandro; Soler Illia, Galo Juan de Avila Arturo; Bellino, Martin Gonzalo; Wired Enzymes in mesoporous materials: A benchmark for fabricating biofuel cells; Elsevier Science Sa; Bioelectrochemistry; 106; 12-2015; 14-211567-5394CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.bioelechem.2015.06.006info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1567539415000833info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:45Zoai:ri.conicet.gov.ar:11336/38471instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:46.222CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Wired Enzymes in mesoporous materials: A benchmark for fabricating biofuel cells
title Wired Enzymes in mesoporous materials: A benchmark for fabricating biofuel cells
spellingShingle Wired Enzymes in mesoporous materials: A benchmark for fabricating biofuel cells
Catalano, Paolo Nicolás
Mesoporous Materials
Enzymatic Biofuel Cells
Enzyme Wiring
title_short Wired Enzymes in mesoporous materials: A benchmark for fabricating biofuel cells
title_full Wired Enzymes in mesoporous materials: A benchmark for fabricating biofuel cells
title_fullStr Wired Enzymes in mesoporous materials: A benchmark for fabricating biofuel cells
title_full_unstemmed Wired Enzymes in mesoporous materials: A benchmark for fabricating biofuel cells
title_sort Wired Enzymes in mesoporous materials: A benchmark for fabricating biofuel cells
dc.creator.none.fl_str_mv Catalano, Paolo Nicolás
Wolosiuk, Alejandro
Soler Illia, Galo Juan de Avila Arturo
Bellino, Martin Gonzalo
author Catalano, Paolo Nicolás
author_facet Catalano, Paolo Nicolás
Wolosiuk, Alejandro
Soler Illia, Galo Juan de Avila Arturo
Bellino, Martin Gonzalo
author_role author
author2 Wolosiuk, Alejandro
Soler Illia, Galo Juan de Avila Arturo
Bellino, Martin Gonzalo
author2_role author
author
author
dc.subject.none.fl_str_mv Mesoporous Materials
Enzymatic Biofuel Cells
Enzyme Wiring
topic Mesoporous Materials
Enzymatic Biofuel Cells
Enzyme Wiring
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Evolution of fuel cells using metallic inorganic catalysts has led to the development of biofuel cells with potential applications in implantable devices. However, the main disadvantages in real world applications of enzymatic biofuel cells are short lifetime and low power density. Many efforts have been devoted to immobilize redox enzymes on surfaces to allow efficient electrical communication with electrodes and to provide an adequate habitat for biochemical activity. In this context, nanocavities of mesoporous materials offer a tailored environment for protein immobilization. Mesostructured platforms with high surface area and stability have been developed to enhance mass transport, charge transfer from biocatalysts to electrodes and enzyme stability, leading to biofuel cells with improved power density (up to 602 μW cm− 2 at physiological conditions) and overall performance (high stability after 30 h of continuous operation and after 10 days of storage). This review discusses recent developments using mesoporous materials as novel platforms for effective electronic charge transfer in the context of current and emerging technologies in enzymatic fuel cell research, emphasizing their practical implications and potential improvements leading to a major impact on medical science and portable electronics.
Fil: Catalano, Paolo Nicolás. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Wolosiuk, Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soler Illia, Galo Juan de Avila Arturo. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bellino, Martin Gonzalo. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Evolution of fuel cells using metallic inorganic catalysts has led to the development of biofuel cells with potential applications in implantable devices. However, the main disadvantages in real world applications of enzymatic biofuel cells are short lifetime and low power density. Many efforts have been devoted to immobilize redox enzymes on surfaces to allow efficient electrical communication with electrodes and to provide an adequate habitat for biochemical activity. In this context, nanocavities of mesoporous materials offer a tailored environment for protein immobilization. Mesostructured platforms with high surface area and stability have been developed to enhance mass transport, charge transfer from biocatalysts to electrodes and enzyme stability, leading to biofuel cells with improved power density (up to 602 μW cm− 2 at physiological conditions) and overall performance (high stability after 30 h of continuous operation and after 10 days of storage). This review discusses recent developments using mesoporous materials as novel platforms for effective electronic charge transfer in the context of current and emerging technologies in enzymatic fuel cell research, emphasizing their practical implications and potential improvements leading to a major impact on medical science and portable electronics.
publishDate 2015
dc.date.none.fl_str_mv 2015-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/38471
Catalano, Paolo Nicolás; Wolosiuk, Alejandro; Soler Illia, Galo Juan de Avila Arturo; Bellino, Martin Gonzalo; Wired Enzymes in mesoporous materials: A benchmark for fabricating biofuel cells; Elsevier Science Sa; Bioelectrochemistry; 106; 12-2015; 14-21
1567-5394
CONICET Digital
CONICET
url http://hdl.handle.net/11336/38471
identifier_str_mv Catalano, Paolo Nicolás; Wolosiuk, Alejandro; Soler Illia, Galo Juan de Avila Arturo; Bellino, Martin Gonzalo; Wired Enzymes in mesoporous materials: A benchmark for fabricating biofuel cells; Elsevier Science Sa; Bioelectrochemistry; 106; 12-2015; 14-21
1567-5394
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bioelechem.2015.06.006
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1567539415000833
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Sa
publisher.none.fl_str_mv Elsevier Science Sa
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613001940828160
score 13.070432