Local Belief Dynamics in Network Knowledge Bases

Autores
Gallo, Fabio Rafael; Simari, Gerardo; Martinez, Maria Vanina; Abad Santos, Natalia Vanesa; Falappa, Marcelo Alejandro
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
People are becoming increasingly more connected to each other as social networks continue to grow both in number and variety, and this is true for autonomous software agents as well. Taking them as a collection, such social platforms can be seen as one complex network with many different types of relations, different degrees of strength for each relation, and a wide range of information on each node. In this context, social media posts made by users are reflections of the content of their own individual (or local) knowledge bases; modeling how knowledge flows over the network? or how this can possibly occur? is therefore of great interest from a knowledge representation and reasoning perspective. In this article, we provide a formal introduction to the network knowledge base model, and then focus on the problem of how a single agents knowledge base changes when exposed to a stream of news items coming from other members of the network. We do so by taking the classical belief revision approach of first proposing desirable properties for how such a local operation should be carried out (theoretical characterization), arriving at three different families of local operators, exploring concrete algorithms (algorithmic characterization) for two of the families, and proving properties about the relationship between the two characterizations (representation theorem). One of the most important differences between our approach and the classical models of belief revision is that in our case the input is more complex, containing additional information about each piece of information.
Fil: Gallo, Fabio Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Abad Santos, Natalia Vanesa. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Materia
BELIEF REVISION
NETWORK KNOWLEDGE BASES
SOCIAL NETWORKS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/205778

id CONICETDig_64e384385621d054faf3a2d71bc55f38
oai_identifier_str oai:ri.conicet.gov.ar:11336/205778
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Local Belief Dynamics in Network Knowledge BasesGallo, Fabio RafaelSimari, GerardoMartinez, Maria VaninaAbad Santos, Natalia VanesaFalappa, Marcelo AlejandroBELIEF REVISIONNETWORK KNOWLEDGE BASESSOCIAL NETWORKShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1People are becoming increasingly more connected to each other as social networks continue to grow both in number and variety, and this is true for autonomous software agents as well. Taking them as a collection, such social platforms can be seen as one complex network with many different types of relations, different degrees of strength for each relation, and a wide range of information on each node. In this context, social media posts made by users are reflections of the content of their own individual (or local) knowledge bases; modeling how knowledge flows over the network? or how this can possibly occur? is therefore of great interest from a knowledge representation and reasoning perspective. In this article, we provide a formal introduction to the network knowledge base model, and then focus on the problem of how a single agents knowledge base changes when exposed to a stream of news items coming from other members of the network. We do so by taking the classical belief revision approach of first proposing desirable properties for how such a local operation should be carried out (theoretical characterization), arriving at three different families of local operators, exploring concrete algorithms (algorithmic characterization) for two of the families, and proving properties about the relationship between the two characterizations (representation theorem). One of the most important differences between our approach and the classical models of belief revision is that in our case the input is more complex, containing additional information about each piece of information.Fil: Gallo, Fabio Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Abad Santos, Natalia Vanesa. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaAssociation for Computing Machinery2021-10-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/205778Gallo, Fabio Rafael; Simari, Gerardo; Martinez, Maria Vanina; Abad Santos, Natalia Vanesa; Falappa, Marcelo Alejandro; Local Belief Dynamics in Network Knowledge Bases; Association for Computing Machinery; Acm Transactions On Computational Logic; 23; 1; 22-10-2021; 4-361529-3785CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/10.1145/3477394info:eu-repo/semantics/altIdentifier/doi/10.1145/3477394info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:15Zoai:ri.conicet.gov.ar:11336/205778instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:15.683CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Local Belief Dynamics in Network Knowledge Bases
title Local Belief Dynamics in Network Knowledge Bases
spellingShingle Local Belief Dynamics in Network Knowledge Bases
Gallo, Fabio Rafael
BELIEF REVISION
NETWORK KNOWLEDGE BASES
SOCIAL NETWORKS
title_short Local Belief Dynamics in Network Knowledge Bases
title_full Local Belief Dynamics in Network Knowledge Bases
title_fullStr Local Belief Dynamics in Network Knowledge Bases
title_full_unstemmed Local Belief Dynamics in Network Knowledge Bases
title_sort Local Belief Dynamics in Network Knowledge Bases
dc.creator.none.fl_str_mv Gallo, Fabio Rafael
Simari, Gerardo
Martinez, Maria Vanina
Abad Santos, Natalia Vanesa
Falappa, Marcelo Alejandro
author Gallo, Fabio Rafael
author_facet Gallo, Fabio Rafael
Simari, Gerardo
Martinez, Maria Vanina
Abad Santos, Natalia Vanesa
Falappa, Marcelo Alejandro
author_role author
author2 Simari, Gerardo
Martinez, Maria Vanina
Abad Santos, Natalia Vanesa
Falappa, Marcelo Alejandro
author2_role author
author
author
author
dc.subject.none.fl_str_mv BELIEF REVISION
NETWORK KNOWLEDGE BASES
SOCIAL NETWORKS
topic BELIEF REVISION
NETWORK KNOWLEDGE BASES
SOCIAL NETWORKS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv People are becoming increasingly more connected to each other as social networks continue to grow both in number and variety, and this is true for autonomous software agents as well. Taking them as a collection, such social platforms can be seen as one complex network with many different types of relations, different degrees of strength for each relation, and a wide range of information on each node. In this context, social media posts made by users are reflections of the content of their own individual (or local) knowledge bases; modeling how knowledge flows over the network? or how this can possibly occur? is therefore of great interest from a knowledge representation and reasoning perspective. In this article, we provide a formal introduction to the network knowledge base model, and then focus on the problem of how a single agents knowledge base changes when exposed to a stream of news items coming from other members of the network. We do so by taking the classical belief revision approach of first proposing desirable properties for how such a local operation should be carried out (theoretical characterization), arriving at three different families of local operators, exploring concrete algorithms (algorithmic characterization) for two of the families, and proving properties about the relationship between the two characterizations (representation theorem). One of the most important differences between our approach and the classical models of belief revision is that in our case the input is more complex, containing additional information about each piece of information.
Fil: Gallo, Fabio Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Abad Santos, Natalia Vanesa. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
description People are becoming increasingly more connected to each other as social networks continue to grow both in number and variety, and this is true for autonomous software agents as well. Taking them as a collection, such social platforms can be seen as one complex network with many different types of relations, different degrees of strength for each relation, and a wide range of information on each node. In this context, social media posts made by users are reflections of the content of their own individual (or local) knowledge bases; modeling how knowledge flows over the network? or how this can possibly occur? is therefore of great interest from a knowledge representation and reasoning perspective. In this article, we provide a formal introduction to the network knowledge base model, and then focus on the problem of how a single agents knowledge base changes when exposed to a stream of news items coming from other members of the network. We do so by taking the classical belief revision approach of first proposing desirable properties for how such a local operation should be carried out (theoretical characterization), arriving at three different families of local operators, exploring concrete algorithms (algorithmic characterization) for two of the families, and proving properties about the relationship between the two characterizations (representation theorem). One of the most important differences between our approach and the classical models of belief revision is that in our case the input is more complex, containing additional information about each piece of information.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-22
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/205778
Gallo, Fabio Rafael; Simari, Gerardo; Martinez, Maria Vanina; Abad Santos, Natalia Vanesa; Falappa, Marcelo Alejandro; Local Belief Dynamics in Network Knowledge Bases; Association for Computing Machinery; Acm Transactions On Computational Logic; 23; 1; 22-10-2021; 4-36
1529-3785
CONICET Digital
CONICET
url http://hdl.handle.net/11336/205778
identifier_str_mv Gallo, Fabio Rafael; Simari, Gerardo; Martinez, Maria Vanina; Abad Santos, Natalia Vanesa; Falappa, Marcelo Alejandro; Local Belief Dynamics in Network Knowledge Bases; Association for Computing Machinery; Acm Transactions On Computational Logic; 23; 1; 22-10-2021; 4-36
1529-3785
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/10.1145/3477394
info:eu-repo/semantics/altIdentifier/doi/10.1145/3477394
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Association for Computing Machinery
publisher.none.fl_str_mv Association for Computing Machinery
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613846142025728
score 13.070432