Pointwise convergence to the initial data for nonlocal dyadic diffusions

Autores
Actis, Marcelo Jesús; Aimar, Hugo Alejandro
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we solve the initial value problem for the diffusion induced by dyadic fractional derivative s in R +. First we obtain the spectral analysis of the dyadic fractional derivative operator in terms of the Haar system, which unveils a structure for the underlying “heat kernel”. We show that this kernel admits an integrable and decreasing majorant that involves the dyadic distance. This allows us to provide an estimate of the maximal operator of the diffusion by the Hardy-Littlewood dyadic maximal operator. As a consequence we obtain the pointwise convergence to the initial data.
Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
pointwise convergence
nonlocal diffusion
dyadic fractional derivatives
Haar bases
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/30630

id CONICETDig_63b080170f4e5df198fa03eb8cf41813
oai_identifier_str oai:ri.conicet.gov.ar:11336/30630
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Pointwise convergence to the initial data for nonlocal dyadic diffusionsActis, Marcelo JesúsAimar, Hugo Alejandropointwise convergencenonlocal diffusiondyadic fractional derivativesHaar baseshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we solve the initial value problem for the diffusion induced by dyadic fractional derivative s in R +. First we obtain the spectral analysis of the dyadic fractional derivative operator in terms of the Haar system, which unveils a structure for the underlying “heat kernel”. We show that this kernel admits an integrable and decreasing majorant that involves the dyadic distance. This allows us to provide an estimate of the maximal operator of the diffusion by the Hardy-Littlewood dyadic maximal operator. As a consequence we obtain the pointwise convergence to the initial data.Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaSpringer Heidelberg2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30630Actis, Marcelo Jesús; Aimar, Hugo Alejandro; Pointwise convergence to the initial data for nonlocal dyadic diffusions; Springer Heidelberg; Czechoslovak Mathematical Journal; 66; 1; 3-2016; 193-2040011-4642CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10587-016-0249-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10587-016-0249-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:48Zoai:ri.conicet.gov.ar:11336/30630instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:48.305CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Pointwise convergence to the initial data for nonlocal dyadic diffusions
title Pointwise convergence to the initial data for nonlocal dyadic diffusions
spellingShingle Pointwise convergence to the initial data for nonlocal dyadic diffusions
Actis, Marcelo Jesús
pointwise convergence
nonlocal diffusion
dyadic fractional derivatives
Haar bases
title_short Pointwise convergence to the initial data for nonlocal dyadic diffusions
title_full Pointwise convergence to the initial data for nonlocal dyadic diffusions
title_fullStr Pointwise convergence to the initial data for nonlocal dyadic diffusions
title_full_unstemmed Pointwise convergence to the initial data for nonlocal dyadic diffusions
title_sort Pointwise convergence to the initial data for nonlocal dyadic diffusions
dc.creator.none.fl_str_mv Actis, Marcelo Jesús
Aimar, Hugo Alejandro
author Actis, Marcelo Jesús
author_facet Actis, Marcelo Jesús
Aimar, Hugo Alejandro
author_role author
author2 Aimar, Hugo Alejandro
author2_role author
dc.subject.none.fl_str_mv pointwise convergence
nonlocal diffusion
dyadic fractional derivatives
Haar bases
topic pointwise convergence
nonlocal diffusion
dyadic fractional derivatives
Haar bases
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we solve the initial value problem for the diffusion induced by dyadic fractional derivative s in R +. First we obtain the spectral analysis of the dyadic fractional derivative operator in terms of the Haar system, which unveils a structure for the underlying “heat kernel”. We show that this kernel admits an integrable and decreasing majorant that involves the dyadic distance. This allows us to provide an estimate of the maximal operator of the diffusion by the Hardy-Littlewood dyadic maximal operator. As a consequence we obtain the pointwise convergence to the initial data.
Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description In this paper we solve the initial value problem for the diffusion induced by dyadic fractional derivative s in R +. First we obtain the spectral analysis of the dyadic fractional derivative operator in terms of the Haar system, which unveils a structure for the underlying “heat kernel”. We show that this kernel admits an integrable and decreasing majorant that involves the dyadic distance. This allows us to provide an estimate of the maximal operator of the diffusion by the Hardy-Littlewood dyadic maximal operator. As a consequence we obtain the pointwise convergence to the initial data.
publishDate 2016
dc.date.none.fl_str_mv 2016-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/30630
Actis, Marcelo Jesús; Aimar, Hugo Alejandro; Pointwise convergence to the initial data for nonlocal dyadic diffusions; Springer Heidelberg; Czechoslovak Mathematical Journal; 66; 1; 3-2016; 193-204
0011-4642
CONICET Digital
CONICET
url http://hdl.handle.net/11336/30630
identifier_str_mv Actis, Marcelo Jesús; Aimar, Hugo Alejandro; Pointwise convergence to the initial data for nonlocal dyadic diffusions; Springer Heidelberg; Czechoslovak Mathematical Journal; 66; 1; 3-2016; 193-204
0011-4642
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10587-016-0249-y
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10587-016-0249-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Heidelberg
publisher.none.fl_str_mv Springer Heidelberg
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613565203349504
score 13.070432