Pointwise convergence to the initial data for nonlocal dyadic diffusions
- Autores
- Actis, Marcelo Jesús; Aimar, Hugo Alejandro
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we solve the initial value problem for the diffusion induced by dyadic fractional derivative s in R +. First we obtain the spectral analysis of the dyadic fractional derivative operator in terms of the Haar system, which unveils a structure for the underlying “heat kernel”. We show that this kernel admits an integrable and decreasing majorant that involves the dyadic distance. This allows us to provide an estimate of the maximal operator of the diffusion by the Hardy-Littlewood dyadic maximal operator. As a consequence we obtain the pointwise convergence to the initial data.
Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
pointwise convergence
nonlocal diffusion
dyadic fractional derivatives
Haar bases - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/30630
Ver los metadatos del registro completo
id |
CONICETDig_63b080170f4e5df198fa03eb8cf41813 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/30630 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Pointwise convergence to the initial data for nonlocal dyadic diffusionsActis, Marcelo JesúsAimar, Hugo Alejandropointwise convergencenonlocal diffusiondyadic fractional derivativesHaar baseshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we solve the initial value problem for the diffusion induced by dyadic fractional derivative s in R +. First we obtain the spectral analysis of the dyadic fractional derivative operator in terms of the Haar system, which unveils a structure for the underlying “heat kernel”. We show that this kernel admits an integrable and decreasing majorant that involves the dyadic distance. This allows us to provide an estimate of the maximal operator of the diffusion by the Hardy-Littlewood dyadic maximal operator. As a consequence we obtain the pointwise convergence to the initial data.Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaSpringer Heidelberg2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30630Actis, Marcelo Jesús; Aimar, Hugo Alejandro; Pointwise convergence to the initial data for nonlocal dyadic diffusions; Springer Heidelberg; Czechoslovak Mathematical Journal; 66; 1; 3-2016; 193-2040011-4642CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10587-016-0249-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10587-016-0249-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:48Zoai:ri.conicet.gov.ar:11336/30630instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:48.305CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Pointwise convergence to the initial data for nonlocal dyadic diffusions |
title |
Pointwise convergence to the initial data for nonlocal dyadic diffusions |
spellingShingle |
Pointwise convergence to the initial data for nonlocal dyadic diffusions Actis, Marcelo Jesús pointwise convergence nonlocal diffusion dyadic fractional derivatives Haar bases |
title_short |
Pointwise convergence to the initial data for nonlocal dyadic diffusions |
title_full |
Pointwise convergence to the initial data for nonlocal dyadic diffusions |
title_fullStr |
Pointwise convergence to the initial data for nonlocal dyadic diffusions |
title_full_unstemmed |
Pointwise convergence to the initial data for nonlocal dyadic diffusions |
title_sort |
Pointwise convergence to the initial data for nonlocal dyadic diffusions |
dc.creator.none.fl_str_mv |
Actis, Marcelo Jesús Aimar, Hugo Alejandro |
author |
Actis, Marcelo Jesús |
author_facet |
Actis, Marcelo Jesús Aimar, Hugo Alejandro |
author_role |
author |
author2 |
Aimar, Hugo Alejandro |
author2_role |
author |
dc.subject.none.fl_str_mv |
pointwise convergence nonlocal diffusion dyadic fractional derivatives Haar bases |
topic |
pointwise convergence nonlocal diffusion dyadic fractional derivatives Haar bases |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we solve the initial value problem for the diffusion induced by dyadic fractional derivative s in R +. First we obtain the spectral analysis of the dyadic fractional derivative operator in terms of the Haar system, which unveils a structure for the underlying “heat kernel”. We show that this kernel admits an integrable and decreasing majorant that involves the dyadic distance. This allows us to provide an estimate of the maximal operator of the diffusion by the Hardy-Littlewood dyadic maximal operator. As a consequence we obtain the pointwise convergence to the initial data. Fil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
In this paper we solve the initial value problem for the diffusion induced by dyadic fractional derivative s in R +. First we obtain the spectral analysis of the dyadic fractional derivative operator in terms of the Haar system, which unveils a structure for the underlying “heat kernel”. We show that this kernel admits an integrable and decreasing majorant that involves the dyadic distance. This allows us to provide an estimate of the maximal operator of the diffusion by the Hardy-Littlewood dyadic maximal operator. As a consequence we obtain the pointwise convergence to the initial data. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/30630 Actis, Marcelo Jesús; Aimar, Hugo Alejandro; Pointwise convergence to the initial data for nonlocal dyadic diffusions; Springer Heidelberg; Czechoslovak Mathematical Journal; 66; 1; 3-2016; 193-204 0011-4642 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/30630 |
identifier_str_mv |
Actis, Marcelo Jesús; Aimar, Hugo Alejandro; Pointwise convergence to the initial data for nonlocal dyadic diffusions; Springer Heidelberg; Czechoslovak Mathematical Journal; 66; 1; 3-2016; 193-204 0011-4642 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10587-016-0249-y info:eu-repo/semantics/altIdentifier/doi/10.1007/s10587-016-0249-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Heidelberg |
publisher.none.fl_str_mv |
Springer Heidelberg |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613565203349504 |
score |
13.070432 |