An efficient Particle Swarm Optimization approach to cluster short texts
- Autores
- Cagnina, Leticia Cecilia; Errecalde, Marcelo Luis; Ingaramo, Diego; Rosso, Paolo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Short texts such as evaluations of commercial products, news, FAQ’s and scientific abstracts are important resources on the Web due to the constant requirements of people to use this on line information in real life. In this context, the clustering of short texts is a significant analysis task and a discrete Particle Swarm Optimization (PSO) algorithm named CLUDIPSO has recently shown a promising performance in this type of problems. CLUDIPSO obtained high quality results with small corpora although, with larger corpora, a significant deterioration of performance was observed. This article presents CLUDIPSO★, an improved version of CLUDIPSO, which includes a different representation of particles, a more efficient evaluation of the function to be optimized and some modifications in the mutation operator. Experimental results with corpora containing scientific abstracts, news and short legal documents obtained from the Web, show that CLUDIPSO★ is an effective clustering method for short-text corpora of small and medium size.
Fil: Cagnina, Leticia Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina
Fil: Ingaramo, Diego. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina
Fil: Rosso, Paolo. Universidad Politécnica de Valencia; España - Materia
-
Particle Swarm Optimization
Short-Text Clustering
Clustering as Optimization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32058
Ver los metadatos del registro completo
id |
CONICETDig_07f1e391d7bd7bdc4a70bdaf7fe49d89 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32058 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An efficient Particle Swarm Optimization approach to cluster short textsCagnina, Leticia CeciliaErrecalde, Marcelo LuisIngaramo, DiegoRosso, PaoloParticle Swarm OptimizationShort-Text ClusteringClustering as Optimizationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Short texts such as evaluations of commercial products, news, FAQ’s and scientific abstracts are important resources on the Web due to the constant requirements of people to use this on line information in real life. In this context, the clustering of short texts is a significant analysis task and a discrete Particle Swarm Optimization (PSO) algorithm named CLUDIPSO has recently shown a promising performance in this type of problems. CLUDIPSO obtained high quality results with small corpora although, with larger corpora, a significant deterioration of performance was observed. This article presents CLUDIPSO★, an improved version of CLUDIPSO, which includes a different representation of particles, a more efficient evaluation of the function to be optimized and some modifications in the mutation operator. Experimental results with corpora containing scientific abstracts, news and short legal documents obtained from the Web, show that CLUDIPSO★ is an effective clustering method for short-text corpora of small and medium size.Fil: Cagnina, Leticia Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; ArgentinaFil: Ingaramo, Diego. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; ArgentinaFil: Rosso, Paolo. Universidad Politécnica de Valencia; EspañaElsevier2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32058Cagnina, Leticia Cecilia; Errecalde, Marcelo Luis; Ingaramo, Diego; Rosso, Paolo; An efficient Particle Swarm Optimization approach to cluster short texts; Elsevier; Information Sciences; 265; 5-2014; 36-490020-0255CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ins.2013.12.010info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0020025513008542info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:53Zoai:ri.conicet.gov.ar:11336/32058instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:53.715CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An efficient Particle Swarm Optimization approach to cluster short texts |
title |
An efficient Particle Swarm Optimization approach to cluster short texts |
spellingShingle |
An efficient Particle Swarm Optimization approach to cluster short texts Cagnina, Leticia Cecilia Particle Swarm Optimization Short-Text Clustering Clustering as Optimization |
title_short |
An efficient Particle Swarm Optimization approach to cluster short texts |
title_full |
An efficient Particle Swarm Optimization approach to cluster short texts |
title_fullStr |
An efficient Particle Swarm Optimization approach to cluster short texts |
title_full_unstemmed |
An efficient Particle Swarm Optimization approach to cluster short texts |
title_sort |
An efficient Particle Swarm Optimization approach to cluster short texts |
dc.creator.none.fl_str_mv |
Cagnina, Leticia Cecilia Errecalde, Marcelo Luis Ingaramo, Diego Rosso, Paolo |
author |
Cagnina, Leticia Cecilia |
author_facet |
Cagnina, Leticia Cecilia Errecalde, Marcelo Luis Ingaramo, Diego Rosso, Paolo |
author_role |
author |
author2 |
Errecalde, Marcelo Luis Ingaramo, Diego Rosso, Paolo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Particle Swarm Optimization Short-Text Clustering Clustering as Optimization |
topic |
Particle Swarm Optimization Short-Text Clustering Clustering as Optimization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Short texts such as evaluations of commercial products, news, FAQ’s and scientific abstracts are important resources on the Web due to the constant requirements of people to use this on line information in real life. In this context, the clustering of short texts is a significant analysis task and a discrete Particle Swarm Optimization (PSO) algorithm named CLUDIPSO has recently shown a promising performance in this type of problems. CLUDIPSO obtained high quality results with small corpora although, with larger corpora, a significant deterioration of performance was observed. This article presents CLUDIPSO★, an improved version of CLUDIPSO, which includes a different representation of particles, a more efficient evaluation of the function to be optimized and some modifications in the mutation operator. Experimental results with corpora containing scientific abstracts, news and short legal documents obtained from the Web, show that CLUDIPSO★ is an effective clustering method for short-text corpora of small and medium size. Fil: Cagnina, Leticia Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina Fil: Ingaramo, Diego. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina Fil: Rosso, Paolo. Universidad Politécnica de Valencia; España |
description |
Short texts such as evaluations of commercial products, news, FAQ’s and scientific abstracts are important resources on the Web due to the constant requirements of people to use this on line information in real life. In this context, the clustering of short texts is a significant analysis task and a discrete Particle Swarm Optimization (PSO) algorithm named CLUDIPSO has recently shown a promising performance in this type of problems. CLUDIPSO obtained high quality results with small corpora although, with larger corpora, a significant deterioration of performance was observed. This article presents CLUDIPSO★, an improved version of CLUDIPSO, which includes a different representation of particles, a more efficient evaluation of the function to be optimized and some modifications in the mutation operator. Experimental results with corpora containing scientific abstracts, news and short legal documents obtained from the Web, show that CLUDIPSO★ is an effective clustering method for short-text corpora of small and medium size. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32058 Cagnina, Leticia Cecilia; Errecalde, Marcelo Luis; Ingaramo, Diego; Rosso, Paolo; An efficient Particle Swarm Optimization approach to cluster short texts; Elsevier; Information Sciences; 265; 5-2014; 36-49 0020-0255 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32058 |
identifier_str_mv |
Cagnina, Leticia Cecilia; Errecalde, Marcelo Luis; Ingaramo, Diego; Rosso, Paolo; An efficient Particle Swarm Optimization approach to cluster short texts; Elsevier; Information Sciences; 265; 5-2014; 36-49 0020-0255 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ins.2013.12.010 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0020025513008542 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613773743095808 |
score |
13.070432 |