Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans

Autores
Tomasini, Nicolás; Ragone, Paula Gabriela; Gourbière, Sébastien; Aparicio, Juan Pablo; Diosque, Patricio
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
People living in areas with active vector-borne transmission of Chagas disease have multiple contacts with its causative agent, Trypanosoma cruzi. Reinfections by T. cruzi are possible at least in animal models leading to lower or even hardly detectable parasitaemia. In humans, although reinfections are thought to have major public health implications by increasing the risk of chronic manifestations of the disease, there is little quantitative knowledge about their frequency and the timing of parasite re-inoculation in the course of the disease. Here, we implemented stochastic agent-based models i) to estimate the rate of re-inoculation in humans and ii) to assess how frequent are reinfections during the acute and chronic stages of the disease according to alternative hypotheses on the adaptive immune response following a primary infection. By using a hybrid genetic algorithm, the models were fitted to epidemiological data of Argentinean rural villages where mixed infections by different genotypes of T. cruzi reach 56% in humans. To explain this percentage, the best model predicted 0.032 (0.008–0.042) annual reinfections per individual with 98.4% of them occurring in the chronic phase. In addition, the parasite escapes to the adaptive immune response mounted after the primary infection in at least 20% of the events of re-inoculation. With these low annual rates, the risks of reinfection during the typically long chronic stage of the disease stand around 14% (4%-18%) and 60% (21%-70%) after 5 and 30 years, with most individuals being re-infected 1–3 times overall. These low rates are better explained by the weak efficiency of the stercorarian mode of transmission than a highly efficient adaptive immune response. Those estimates are of particular interest for vaccine development and for our understanding of the higher risk of chronic disease manifestations suffered by infected people living in endemic areas.
Fil: Tomasini, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Patología Experimental. Universidad Nacional de Salta. Facultad de Ciencias de la Salud. Instituto de Patología Experimental; Argentina
Fil: Ragone, Paula Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Patología Experimental. Universidad Nacional de Salta. Facultad de Ciencias de la Salud. Instituto de Patología Experimental; Argentina
Fil: Gourbière, Sébastien. Université de Perpignan Via Domitia; Francia
Fil: Aparicio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energia No Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energia No Convencional; Argentina
Fil: Diosque, Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Patología Experimental. Universidad Nacional de Salta. Facultad de Ciencias de la Salud. Instituto de Patología Experimental; Argentina
Materia
Epidemiological modeling
Trypanosoma cruzi
Mixed infections
Humans transmission
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/37496

id CONICETDig_635f8737a2f7e6821f4cb732a2aecba1
oai_identifier_str oai:ri.conicet.gov.ar:11336/37496
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humansTomasini, NicolásRagone, Paula GabrielaGourbière, SébastienAparicio, Juan PabloDiosque, PatricioEpidemiological modelingTrypanosoma cruziMixed infectionsHumans transmissionhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1People living in areas with active vector-borne transmission of Chagas disease have multiple contacts with its causative agent, Trypanosoma cruzi. Reinfections by T. cruzi are possible at least in animal models leading to lower or even hardly detectable parasitaemia. In humans, although reinfections are thought to have major public health implications by increasing the risk of chronic manifestations of the disease, there is little quantitative knowledge about their frequency and the timing of parasite re-inoculation in the course of the disease. Here, we implemented stochastic agent-based models i) to estimate the rate of re-inoculation in humans and ii) to assess how frequent are reinfections during the acute and chronic stages of the disease according to alternative hypotheses on the adaptive immune response following a primary infection. By using a hybrid genetic algorithm, the models were fitted to epidemiological data of Argentinean rural villages where mixed infections by different genotypes of T. cruzi reach 56% in humans. To explain this percentage, the best model predicted 0.032 (0.008–0.042) annual reinfections per individual with 98.4% of them occurring in the chronic phase. In addition, the parasite escapes to the adaptive immune response mounted after the primary infection in at least 20% of the events of re-inoculation. With these low annual rates, the risks of reinfection during the typically long chronic stage of the disease stand around 14% (4%-18%) and 60% (21%-70%) after 5 and 30 years, with most individuals being re-infected 1–3 times overall. These low rates are better explained by the weak efficiency of the stercorarian mode of transmission than a highly efficient adaptive immune response. Those estimates are of particular interest for vaccine development and for our understanding of the higher risk of chronic disease manifestations suffered by infected people living in endemic areas.Fil: Tomasini, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Patología Experimental. Universidad Nacional de Salta. Facultad de Ciencias de la Salud. Instituto de Patología Experimental; ArgentinaFil: Ragone, Paula Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Patología Experimental. Universidad Nacional de Salta. Facultad de Ciencias de la Salud. Instituto de Patología Experimental; ArgentinaFil: Gourbière, Sébastien. Université de Perpignan Via Domitia; FranciaFil: Aparicio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energia No Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energia No Convencional; ArgentinaFil: Diosque, Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Patología Experimental. Universidad Nacional de Salta. Facultad de Ciencias de la Salud. Instituto de Patología Experimental; ArgentinaPublic Library of Science2017-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37496Tomasini, Nicolás; Ragone, Paula Gabriela; Gourbière, Sébastien; Aparicio, Juan Pablo; Diosque, Patricio; Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans; Public Library of Science; Plos Computational Biology; 13; 5; 5-20171553-734XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pcbi.1005532info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005532info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:27Zoai:ri.conicet.gov.ar:11336/37496instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:27.87CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans
title Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans
spellingShingle Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans
Tomasini, Nicolás
Epidemiological modeling
Trypanosoma cruzi
Mixed infections
Humans transmission
title_short Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans
title_full Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans
title_fullStr Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans
title_full_unstemmed Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans
title_sort Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans
dc.creator.none.fl_str_mv Tomasini, Nicolás
Ragone, Paula Gabriela
Gourbière, Sébastien
Aparicio, Juan Pablo
Diosque, Patricio
author Tomasini, Nicolás
author_facet Tomasini, Nicolás
Ragone, Paula Gabriela
Gourbière, Sébastien
Aparicio, Juan Pablo
Diosque, Patricio
author_role author
author2 Ragone, Paula Gabriela
Gourbière, Sébastien
Aparicio, Juan Pablo
Diosque, Patricio
author2_role author
author
author
author
dc.subject.none.fl_str_mv Epidemiological modeling
Trypanosoma cruzi
Mixed infections
Humans transmission
topic Epidemiological modeling
Trypanosoma cruzi
Mixed infections
Humans transmission
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv People living in areas with active vector-borne transmission of Chagas disease have multiple contacts with its causative agent, Trypanosoma cruzi. Reinfections by T. cruzi are possible at least in animal models leading to lower or even hardly detectable parasitaemia. In humans, although reinfections are thought to have major public health implications by increasing the risk of chronic manifestations of the disease, there is little quantitative knowledge about their frequency and the timing of parasite re-inoculation in the course of the disease. Here, we implemented stochastic agent-based models i) to estimate the rate of re-inoculation in humans and ii) to assess how frequent are reinfections during the acute and chronic stages of the disease according to alternative hypotheses on the adaptive immune response following a primary infection. By using a hybrid genetic algorithm, the models were fitted to epidemiological data of Argentinean rural villages where mixed infections by different genotypes of T. cruzi reach 56% in humans. To explain this percentage, the best model predicted 0.032 (0.008–0.042) annual reinfections per individual with 98.4% of them occurring in the chronic phase. In addition, the parasite escapes to the adaptive immune response mounted after the primary infection in at least 20% of the events of re-inoculation. With these low annual rates, the risks of reinfection during the typically long chronic stage of the disease stand around 14% (4%-18%) and 60% (21%-70%) after 5 and 30 years, with most individuals being re-infected 1–3 times overall. These low rates are better explained by the weak efficiency of the stercorarian mode of transmission than a highly efficient adaptive immune response. Those estimates are of particular interest for vaccine development and for our understanding of the higher risk of chronic disease manifestations suffered by infected people living in endemic areas.
Fil: Tomasini, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Patología Experimental. Universidad Nacional de Salta. Facultad de Ciencias de la Salud. Instituto de Patología Experimental; Argentina
Fil: Ragone, Paula Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Patología Experimental. Universidad Nacional de Salta. Facultad de Ciencias de la Salud. Instituto de Patología Experimental; Argentina
Fil: Gourbière, Sébastien. Université de Perpignan Via Domitia; Francia
Fil: Aparicio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energia No Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energia No Convencional; Argentina
Fil: Diosque, Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Patología Experimental. Universidad Nacional de Salta. Facultad de Ciencias de la Salud. Instituto de Patología Experimental; Argentina
description People living in areas with active vector-borne transmission of Chagas disease have multiple contacts with its causative agent, Trypanosoma cruzi. Reinfections by T. cruzi are possible at least in animal models leading to lower or even hardly detectable parasitaemia. In humans, although reinfections are thought to have major public health implications by increasing the risk of chronic manifestations of the disease, there is little quantitative knowledge about their frequency and the timing of parasite re-inoculation in the course of the disease. Here, we implemented stochastic agent-based models i) to estimate the rate of re-inoculation in humans and ii) to assess how frequent are reinfections during the acute and chronic stages of the disease according to alternative hypotheses on the adaptive immune response following a primary infection. By using a hybrid genetic algorithm, the models were fitted to epidemiological data of Argentinean rural villages where mixed infections by different genotypes of T. cruzi reach 56% in humans. To explain this percentage, the best model predicted 0.032 (0.008–0.042) annual reinfections per individual with 98.4% of them occurring in the chronic phase. In addition, the parasite escapes to the adaptive immune response mounted after the primary infection in at least 20% of the events of re-inoculation. With these low annual rates, the risks of reinfection during the typically long chronic stage of the disease stand around 14% (4%-18%) and 60% (21%-70%) after 5 and 30 years, with most individuals being re-infected 1–3 times overall. These low rates are better explained by the weak efficiency of the stercorarian mode of transmission than a highly efficient adaptive immune response. Those estimates are of particular interest for vaccine development and for our understanding of the higher risk of chronic disease manifestations suffered by infected people living in endemic areas.
publishDate 2017
dc.date.none.fl_str_mv 2017-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/37496
Tomasini, Nicolás; Ragone, Paula Gabriela; Gourbière, Sébastien; Aparicio, Juan Pablo; Diosque, Patricio; Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans; Public Library of Science; Plos Computational Biology; 13; 5; 5-2017
1553-734X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/37496
identifier_str_mv Tomasini, Nicolás; Ragone, Paula Gabriela; Gourbière, Sébastien; Aparicio, Juan Pablo; Diosque, Patricio; Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans; Public Library of Science; Plos Computational Biology; 13; 5; 5-2017
1553-734X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pcbi.1005532
info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005532
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614071749443584
score 13.070432