Kinematics of fault-propagation folding: Analysis of velocity fields in numerical modeling simulations
- Autores
- Plotek, Berenice Lia; Heckenbach, Esther; Brune, Sascha; Cristallini, Ernesto Osvaldo; Likerman, Jeremias
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fault-propagation folding occurs when a shallow fold is created by an underlying propagating thrust fault. These structures are common features of fold and thrust belts and hold key economic relevance as groundwater or hydrocarbon reservoirs. Reconstructing a fault-propagation fold is commonly done by means of the trishear model of the forelimb, a theoretical approach that assumes simplistic rheological rock properties. Here we present a series of numerical models that elucidate the kinematics of fault-propagation folding within an anisotropic sedimentary cover using complex visco-elasto-plastic rheologies. We explore the influence of different parameters like cohesion, angle of internal friction, and viscosity during folding and compare the velocity field with results from the purely kinematic trishear model. In the trishear paradigm, fault-propagation folding features a triangular shear zone ahead of the fault tip whose width is defined by the apical angle that in practice serves as a freely tunable fitting parameter. In agreement with this framework, a triangular zone of concentrated strain forms in all numerical models. We use our models to relate the apical angle to the rheological properties of the modeled sedimentary layers. In purely visco-plastic models, the geometry of the forelimb obtained can be approximated using a trishear kinematic model with high apical angles ranging between 60° and 70°. However, additionally accounting for elastic deformation produces a significant change in the geometry of the beds that require lower apical angles (25°) for trishear kinematics. We conclude that all analyzed numerical models can be represented by applying the theoretical trishear model, whereby folds involving salt layers require high apical angle values while more competent sedimentary rocks need lower values.
Fil: Plotek, Berenice Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina
Fil: Heckenbach, Esther. Universitat Potsdam; Alemania
Fil: Brune, Sascha. German Research Centre for Geosciences; Alemania
Fil: Cristallini, Ernesto Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina
Fil: Likerman, Jeremias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina - Materia
-
FAULT-PROPAGATION FOLDS
FAULT-RELATED FOLDING
NUMERICAL MODELING
TRISHEAR KINEMATICS
VELOCITY FIELDS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/202953
Ver los metadatos del registro completo
id |
CONICETDig_62c01a2bc380811fa535a3c1ef0d569a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/202953 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Kinematics of fault-propagation folding: Analysis of velocity fields in numerical modeling simulationsPlotek, Berenice LiaHeckenbach, EstherBrune, SaschaCristallini, Ernesto OsvaldoLikerman, JeremiasFAULT-PROPAGATION FOLDSFAULT-RELATED FOLDINGNUMERICAL MODELINGTRISHEAR KINEMATICSVELOCITY FIELDShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Fault-propagation folding occurs when a shallow fold is created by an underlying propagating thrust fault. These structures are common features of fold and thrust belts and hold key economic relevance as groundwater or hydrocarbon reservoirs. Reconstructing a fault-propagation fold is commonly done by means of the trishear model of the forelimb, a theoretical approach that assumes simplistic rheological rock properties. Here we present a series of numerical models that elucidate the kinematics of fault-propagation folding within an anisotropic sedimentary cover using complex visco-elasto-plastic rheologies. We explore the influence of different parameters like cohesion, angle of internal friction, and viscosity during folding and compare the velocity field with results from the purely kinematic trishear model. In the trishear paradigm, fault-propagation folding features a triangular shear zone ahead of the fault tip whose width is defined by the apical angle that in practice serves as a freely tunable fitting parameter. In agreement with this framework, a triangular zone of concentrated strain forms in all numerical models. We use our models to relate the apical angle to the rheological properties of the modeled sedimentary layers. In purely visco-plastic models, the geometry of the forelimb obtained can be approximated using a trishear kinematic model with high apical angles ranging between 60° and 70°. However, additionally accounting for elastic deformation produces a significant change in the geometry of the beds that require lower apical angles (25°) for trishear kinematics. We conclude that all analyzed numerical models can be represented by applying the theoretical trishear model, whereby folds involving salt layers require high apical angle values while more competent sedimentary rocks need lower values.Fil: Plotek, Berenice Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Heckenbach, Esther. Universitat Potsdam; AlemaniaFil: Brune, Sascha. German Research Centre for Geosciences; AlemaniaFil: Cristallini, Ernesto Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Likerman, Jeremias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaPergamon-Elsevier Science Ltd2022-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/202953Plotek, Berenice Lia; Heckenbach, Esther; Brune, Sascha; Cristallini, Ernesto Osvaldo; Likerman, Jeremias; Kinematics of fault-propagation folding: Analysis of velocity fields in numerical modeling simulations; Pergamon-Elsevier Science Ltd; Journal Of Structural Geology; 162; 9-2022; 1-140191-8141CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S019181412200195Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsg.2022.104703info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:40Zoai:ri.conicet.gov.ar:11336/202953instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:41.24CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Kinematics of fault-propagation folding: Analysis of velocity fields in numerical modeling simulations |
title |
Kinematics of fault-propagation folding: Analysis of velocity fields in numerical modeling simulations |
spellingShingle |
Kinematics of fault-propagation folding: Analysis of velocity fields in numerical modeling simulations Plotek, Berenice Lia FAULT-PROPAGATION FOLDS FAULT-RELATED FOLDING NUMERICAL MODELING TRISHEAR KINEMATICS VELOCITY FIELDS |
title_short |
Kinematics of fault-propagation folding: Analysis of velocity fields in numerical modeling simulations |
title_full |
Kinematics of fault-propagation folding: Analysis of velocity fields in numerical modeling simulations |
title_fullStr |
Kinematics of fault-propagation folding: Analysis of velocity fields in numerical modeling simulations |
title_full_unstemmed |
Kinematics of fault-propagation folding: Analysis of velocity fields in numerical modeling simulations |
title_sort |
Kinematics of fault-propagation folding: Analysis of velocity fields in numerical modeling simulations |
dc.creator.none.fl_str_mv |
Plotek, Berenice Lia Heckenbach, Esther Brune, Sascha Cristallini, Ernesto Osvaldo Likerman, Jeremias |
author |
Plotek, Berenice Lia |
author_facet |
Plotek, Berenice Lia Heckenbach, Esther Brune, Sascha Cristallini, Ernesto Osvaldo Likerman, Jeremias |
author_role |
author |
author2 |
Heckenbach, Esther Brune, Sascha Cristallini, Ernesto Osvaldo Likerman, Jeremias |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
FAULT-PROPAGATION FOLDS FAULT-RELATED FOLDING NUMERICAL MODELING TRISHEAR KINEMATICS VELOCITY FIELDS |
topic |
FAULT-PROPAGATION FOLDS FAULT-RELATED FOLDING NUMERICAL MODELING TRISHEAR KINEMATICS VELOCITY FIELDS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Fault-propagation folding occurs when a shallow fold is created by an underlying propagating thrust fault. These structures are common features of fold and thrust belts and hold key economic relevance as groundwater or hydrocarbon reservoirs. Reconstructing a fault-propagation fold is commonly done by means of the trishear model of the forelimb, a theoretical approach that assumes simplistic rheological rock properties. Here we present a series of numerical models that elucidate the kinematics of fault-propagation folding within an anisotropic sedimentary cover using complex visco-elasto-plastic rheologies. We explore the influence of different parameters like cohesion, angle of internal friction, and viscosity during folding and compare the velocity field with results from the purely kinematic trishear model. In the trishear paradigm, fault-propagation folding features a triangular shear zone ahead of the fault tip whose width is defined by the apical angle that in practice serves as a freely tunable fitting parameter. In agreement with this framework, a triangular zone of concentrated strain forms in all numerical models. We use our models to relate the apical angle to the rheological properties of the modeled sedimentary layers. In purely visco-plastic models, the geometry of the forelimb obtained can be approximated using a trishear kinematic model with high apical angles ranging between 60° and 70°. However, additionally accounting for elastic deformation produces a significant change in the geometry of the beds that require lower apical angles (25°) for trishear kinematics. We conclude that all analyzed numerical models can be represented by applying the theoretical trishear model, whereby folds involving salt layers require high apical angle values while more competent sedimentary rocks need lower values. Fil: Plotek, Berenice Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina Fil: Heckenbach, Esther. Universitat Potsdam; Alemania Fil: Brune, Sascha. German Research Centre for Geosciences; Alemania Fil: Cristallini, Ernesto Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina Fil: Likerman, Jeremias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina |
description |
Fault-propagation folding occurs when a shallow fold is created by an underlying propagating thrust fault. These structures are common features of fold and thrust belts and hold key economic relevance as groundwater or hydrocarbon reservoirs. Reconstructing a fault-propagation fold is commonly done by means of the trishear model of the forelimb, a theoretical approach that assumes simplistic rheological rock properties. Here we present a series of numerical models that elucidate the kinematics of fault-propagation folding within an anisotropic sedimentary cover using complex visco-elasto-plastic rheologies. We explore the influence of different parameters like cohesion, angle of internal friction, and viscosity during folding and compare the velocity field with results from the purely kinematic trishear model. In the trishear paradigm, fault-propagation folding features a triangular shear zone ahead of the fault tip whose width is defined by the apical angle that in practice serves as a freely tunable fitting parameter. In agreement with this framework, a triangular zone of concentrated strain forms in all numerical models. We use our models to relate the apical angle to the rheological properties of the modeled sedimentary layers. In purely visco-plastic models, the geometry of the forelimb obtained can be approximated using a trishear kinematic model with high apical angles ranging between 60° and 70°. However, additionally accounting for elastic deformation produces a significant change in the geometry of the beds that require lower apical angles (25°) for trishear kinematics. We conclude that all analyzed numerical models can be represented by applying the theoretical trishear model, whereby folds involving salt layers require high apical angle values while more competent sedimentary rocks need lower values. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/202953 Plotek, Berenice Lia; Heckenbach, Esther; Brune, Sascha; Cristallini, Ernesto Osvaldo; Likerman, Jeremias; Kinematics of fault-propagation folding: Analysis of velocity fields in numerical modeling simulations; Pergamon-Elsevier Science Ltd; Journal Of Structural Geology; 162; 9-2022; 1-14 0191-8141 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/202953 |
identifier_str_mv |
Plotek, Berenice Lia; Heckenbach, Esther; Brune, Sascha; Cristallini, Ernesto Osvaldo; Likerman, Jeremias; Kinematics of fault-propagation folding: Analysis of velocity fields in numerical modeling simulations; Pergamon-Elsevier Science Ltd; Journal Of Structural Geology; 162; 9-2022; 1-14 0191-8141 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S019181412200195X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsg.2022.104703 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980847206006784 |
score |
12.993085 |