Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model
- Autores
- Plotek, Berenice Lia; Likerman, Jeremias; Cristallini, Ernesto Osvaldo
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fault-propagation folds are common structures within fold and thrust belts. The trishear kinematic model has been widely used to understand the kinematics and geometry of these folds, effectively reproducing various characteristics. However, the resulting geometry of natural prototypes may diverge from the predictions of the trishear model depending on the rheological properties involved in the deformation. In order to address this limitation, finite element viscoplastic numerical models were implemented. The analysis revealed that in models with a 15° fault angle, these simulations develop a mechanically weaker discontinuity, which is defined as the low viscosity zone (LVZ). The LVZ induces faulting and absorbs slip, causing deviations of velocity vectors from parallel alignment with the main reverse ramp. In models with fault angles set at 25° or 35°, the kinematic vectors of the hanging wall aligned parallel to the ramp, and a zone of progressive rotation of the velocity vectors was observed in the forelimb, resembling the theoretical trishear zone. In these scenarios, the resulting folds exhibited greater symmetry. However, in cover layers with a viscosity equal to 1020 Pa s, the forelimb exhibits the highest velocities, which is attributed to material flow toward the footwall.
Fil: Plotek, Berenice Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina
Fil: Likerman, Jeremias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina
Fil: Cristallini, Ernesto Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina - Materia
-
FAULT-PROPAGATION FOLDING
FINITE-ELEMENT NUMERICAL MODEL
KINEMATIC FIELD
TRISHEAR METHOD - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/232173
Ver los metadatos del registro completo
id |
CONICETDig_3b8e89b70a86b61ccd6bcca1fe4a2b1f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/232173 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic modelPlotek, Berenice LiaLikerman, JeremiasCristallini, Ernesto OsvaldoFAULT-PROPAGATION FOLDINGFINITE-ELEMENT NUMERICAL MODELKINEMATIC FIELDTRISHEAR METHODhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Fault-propagation folds are common structures within fold and thrust belts. The trishear kinematic model has been widely used to understand the kinematics and geometry of these folds, effectively reproducing various characteristics. However, the resulting geometry of natural prototypes may diverge from the predictions of the trishear model depending on the rheological properties involved in the deformation. In order to address this limitation, finite element viscoplastic numerical models were implemented. The analysis revealed that in models with a 15° fault angle, these simulations develop a mechanically weaker discontinuity, which is defined as the low viscosity zone (LVZ). The LVZ induces faulting and absorbs slip, causing deviations of velocity vectors from parallel alignment with the main reverse ramp. In models with fault angles set at 25° or 35°, the kinematic vectors of the hanging wall aligned parallel to the ramp, and a zone of progressive rotation of the velocity vectors was observed in the forelimb, resembling the theoretical trishear zone. In these scenarios, the resulting folds exhibited greater symmetry. However, in cover layers with a viscosity equal to 1020 Pa s, the forelimb exhibits the highest velocities, which is attributed to material flow toward the footwall.Fil: Plotek, Berenice Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Likerman, Jeremias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Cristallini, Ernesto Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaPergamon-Elsevier Science Ltd2024-03info:eu-repo/date/embargoEnd/2024-09-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/232173Plotek, Berenice Lia; Likerman, Jeremias; Cristallini, Ernesto Osvaldo; Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model; Pergamon-Elsevier Science Ltd; Journal Of Structural Geology; 180; 3-2024; 1-100191-8141CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0191814124000166info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsg.2024.105064info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:06:53Zoai:ri.conicet.gov.ar:11336/232173instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:06:54.102CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model |
title |
Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model |
spellingShingle |
Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model Plotek, Berenice Lia FAULT-PROPAGATION FOLDING FINITE-ELEMENT NUMERICAL MODEL KINEMATIC FIELD TRISHEAR METHOD |
title_short |
Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model |
title_full |
Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model |
title_fullStr |
Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model |
title_full_unstemmed |
Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model |
title_sort |
Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model |
dc.creator.none.fl_str_mv |
Plotek, Berenice Lia Likerman, Jeremias Cristallini, Ernesto Osvaldo |
author |
Plotek, Berenice Lia |
author_facet |
Plotek, Berenice Lia Likerman, Jeremias Cristallini, Ernesto Osvaldo |
author_role |
author |
author2 |
Likerman, Jeremias Cristallini, Ernesto Osvaldo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FAULT-PROPAGATION FOLDING FINITE-ELEMENT NUMERICAL MODEL KINEMATIC FIELD TRISHEAR METHOD |
topic |
FAULT-PROPAGATION FOLDING FINITE-ELEMENT NUMERICAL MODEL KINEMATIC FIELD TRISHEAR METHOD |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Fault-propagation folds are common structures within fold and thrust belts. The trishear kinematic model has been widely used to understand the kinematics and geometry of these folds, effectively reproducing various characteristics. However, the resulting geometry of natural prototypes may diverge from the predictions of the trishear model depending on the rheological properties involved in the deformation. In order to address this limitation, finite element viscoplastic numerical models were implemented. The analysis revealed that in models with a 15° fault angle, these simulations develop a mechanically weaker discontinuity, which is defined as the low viscosity zone (LVZ). The LVZ induces faulting and absorbs slip, causing deviations of velocity vectors from parallel alignment with the main reverse ramp. In models with fault angles set at 25° or 35°, the kinematic vectors of the hanging wall aligned parallel to the ramp, and a zone of progressive rotation of the velocity vectors was observed in the forelimb, resembling the theoretical trishear zone. In these scenarios, the resulting folds exhibited greater symmetry. However, in cover layers with a viscosity equal to 1020 Pa s, the forelimb exhibits the highest velocities, which is attributed to material flow toward the footwall. Fil: Plotek, Berenice Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina Fil: Likerman, Jeremias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina Fil: Cristallini, Ernesto Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina |
description |
Fault-propagation folds are common structures within fold and thrust belts. The trishear kinematic model has been widely used to understand the kinematics and geometry of these folds, effectively reproducing various characteristics. However, the resulting geometry of natural prototypes may diverge from the predictions of the trishear model depending on the rheological properties involved in the deformation. In order to address this limitation, finite element viscoplastic numerical models were implemented. The analysis revealed that in models with a 15° fault angle, these simulations develop a mechanically weaker discontinuity, which is defined as the low viscosity zone (LVZ). The LVZ induces faulting and absorbs slip, causing deviations of velocity vectors from parallel alignment with the main reverse ramp. In models with fault angles set at 25° or 35°, the kinematic vectors of the hanging wall aligned parallel to the ramp, and a zone of progressive rotation of the velocity vectors was observed in the forelimb, resembling the theoretical trishear zone. In these scenarios, the resulting folds exhibited greater symmetry. However, in cover layers with a viscosity equal to 1020 Pa s, the forelimb exhibits the highest velocities, which is attributed to material flow toward the footwall. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03 info:eu-repo/date/embargoEnd/2024-09-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/232173 Plotek, Berenice Lia; Likerman, Jeremias; Cristallini, Ernesto Osvaldo; Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model; Pergamon-Elsevier Science Ltd; Journal Of Structural Geology; 180; 3-2024; 1-10 0191-8141 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/232173 |
identifier_str_mv |
Plotek, Berenice Lia; Likerman, Jeremias; Cristallini, Ernesto Osvaldo; Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model; Pergamon-Elsevier Science Ltd; Journal Of Structural Geology; 180; 3-2024; 1-10 0191-8141 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0191814124000166 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsg.2024.105064 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980297177563136 |
score |
12.993085 |