Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model

Autores
Plotek, Berenice Lia; Likerman, Jeremias; Cristallini, Ernesto Osvaldo
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fault-propagation folds are common structures within fold and thrust belts. The trishear kinematic model has been widely used to understand the kinematics and geometry of these folds, effectively reproducing various characteristics. However, the resulting geometry of natural prototypes may diverge from the predictions of the trishear model depending on the rheological properties involved in the deformation. In order to address this limitation, finite element viscoplastic numerical models were implemented. The analysis revealed that in models with a 15° fault angle, these simulations develop a mechanically weaker discontinuity, which is defined as the low viscosity zone (LVZ). The LVZ induces faulting and absorbs slip, causing deviations of velocity vectors from parallel alignment with the main reverse ramp. In models with fault angles set at 25° or 35°, the kinematic vectors of the hanging wall aligned parallel to the ramp, and a zone of progressive rotation of the velocity vectors was observed in the forelimb, resembling the theoretical trishear zone. In these scenarios, the resulting folds exhibited greater symmetry. However, in cover layers with a viscosity equal to 1020 Pa s, the forelimb exhibits the highest velocities, which is attributed to material flow toward the footwall.
Fil: Plotek, Berenice Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina
Fil: Likerman, Jeremias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina
Fil: Cristallini, Ernesto Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina
Materia
FAULT-PROPAGATION FOLDING
FINITE-ELEMENT NUMERICAL MODEL
KINEMATIC FIELD
TRISHEAR METHOD
Nivel de accesibilidad
acceso embargado
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/232173

id CONICETDig_3b8e89b70a86b61ccd6bcca1fe4a2b1f
oai_identifier_str oai:ri.conicet.gov.ar:11336/232173
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic modelPlotek, Berenice LiaLikerman, JeremiasCristallini, Ernesto OsvaldoFAULT-PROPAGATION FOLDINGFINITE-ELEMENT NUMERICAL MODELKINEMATIC FIELDTRISHEAR METHODhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Fault-propagation folds are common structures within fold and thrust belts. The trishear kinematic model has been widely used to understand the kinematics and geometry of these folds, effectively reproducing various characteristics. However, the resulting geometry of natural prototypes may diverge from the predictions of the trishear model depending on the rheological properties involved in the deformation. In order to address this limitation, finite element viscoplastic numerical models were implemented. The analysis revealed that in models with a 15° fault angle, these simulations develop a mechanically weaker discontinuity, which is defined as the low viscosity zone (LVZ). The LVZ induces faulting and absorbs slip, causing deviations of velocity vectors from parallel alignment with the main reverse ramp. In models with fault angles set at 25° or 35°, the kinematic vectors of the hanging wall aligned parallel to the ramp, and a zone of progressive rotation of the velocity vectors was observed in the forelimb, resembling the theoretical trishear zone. In these scenarios, the resulting folds exhibited greater symmetry. However, in cover layers with a viscosity equal to 1020 Pa s, the forelimb exhibits the highest velocities, which is attributed to material flow toward the footwall.Fil: Plotek, Berenice Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Likerman, Jeremias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Cristallini, Ernesto Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaPergamon-Elsevier Science Ltd2024-03info:eu-repo/date/embargoEnd/2024-09-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/232173Plotek, Berenice Lia; Likerman, Jeremias; Cristallini, Ernesto Osvaldo; Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model; Pergamon-Elsevier Science Ltd; Journal Of Structural Geology; 180; 3-2024; 1-100191-8141CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0191814124000166info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsg.2024.105064info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:06:53Zoai:ri.conicet.gov.ar:11336/232173instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:06:54.102CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model
title Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model
spellingShingle Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model
Plotek, Berenice Lia
FAULT-PROPAGATION FOLDING
FINITE-ELEMENT NUMERICAL MODEL
KINEMATIC FIELD
TRISHEAR METHOD
title_short Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model
title_full Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model
title_fullStr Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model
title_full_unstemmed Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model
title_sort Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model
dc.creator.none.fl_str_mv Plotek, Berenice Lia
Likerman, Jeremias
Cristallini, Ernesto Osvaldo
author Plotek, Berenice Lia
author_facet Plotek, Berenice Lia
Likerman, Jeremias
Cristallini, Ernesto Osvaldo
author_role author
author2 Likerman, Jeremias
Cristallini, Ernesto Osvaldo
author2_role author
author
dc.subject.none.fl_str_mv FAULT-PROPAGATION FOLDING
FINITE-ELEMENT NUMERICAL MODEL
KINEMATIC FIELD
TRISHEAR METHOD
topic FAULT-PROPAGATION FOLDING
FINITE-ELEMENT NUMERICAL MODEL
KINEMATIC FIELD
TRISHEAR METHOD
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Fault-propagation folds are common structures within fold and thrust belts. The trishear kinematic model has been widely used to understand the kinematics and geometry of these folds, effectively reproducing various characteristics. However, the resulting geometry of natural prototypes may diverge from the predictions of the trishear model depending on the rheological properties involved in the deformation. In order to address this limitation, finite element viscoplastic numerical models were implemented. The analysis revealed that in models with a 15° fault angle, these simulations develop a mechanically weaker discontinuity, which is defined as the low viscosity zone (LVZ). The LVZ induces faulting and absorbs slip, causing deviations of velocity vectors from parallel alignment with the main reverse ramp. In models with fault angles set at 25° or 35°, the kinematic vectors of the hanging wall aligned parallel to the ramp, and a zone of progressive rotation of the velocity vectors was observed in the forelimb, resembling the theoretical trishear zone. In these scenarios, the resulting folds exhibited greater symmetry. However, in cover layers with a viscosity equal to 1020 Pa s, the forelimb exhibits the highest velocities, which is attributed to material flow toward the footwall.
Fil: Plotek, Berenice Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina
Fil: Likerman, Jeremias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina
Fil: Cristallini, Ernesto Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina
description Fault-propagation folds are common structures within fold and thrust belts. The trishear kinematic model has been widely used to understand the kinematics and geometry of these folds, effectively reproducing various characteristics. However, the resulting geometry of natural prototypes may diverge from the predictions of the trishear model depending on the rheological properties involved in the deformation. In order to address this limitation, finite element viscoplastic numerical models were implemented. The analysis revealed that in models with a 15° fault angle, these simulations develop a mechanically weaker discontinuity, which is defined as the low viscosity zone (LVZ). The LVZ induces faulting and absorbs slip, causing deviations of velocity vectors from parallel alignment with the main reverse ramp. In models with fault angles set at 25° or 35°, the kinematic vectors of the hanging wall aligned parallel to the ramp, and a zone of progressive rotation of the velocity vectors was observed in the forelimb, resembling the theoretical trishear zone. In these scenarios, the resulting folds exhibited greater symmetry. However, in cover layers with a viscosity equal to 1020 Pa s, the forelimb exhibits the highest velocities, which is attributed to material flow toward the footwall.
publishDate 2024
dc.date.none.fl_str_mv 2024-03
info:eu-repo/date/embargoEnd/2024-09-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/232173
Plotek, Berenice Lia; Likerman, Jeremias; Cristallini, Ernesto Osvaldo; Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model; Pergamon-Elsevier Science Ltd; Journal Of Structural Geology; 180; 3-2024; 1-10
0191-8141
CONICET Digital
CONICET
url http://hdl.handle.net/11336/232173
identifier_str_mv Plotek, Berenice Lia; Likerman, Jeremias; Cristallini, Ernesto Osvaldo; Geomechanical modeling of fault-propagation folds: A comparative analysis of finite-element and the trishear kinematic model; Pergamon-Elsevier Science Ltd; Journal Of Structural Geology; 180; 3-2024; 1-10
0191-8141
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0191814124000166
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsg.2024.105064
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980297177563136
score 12.993085