Classification of Cattle Coat Color Based on Genotype Using Pattern Recognition Methods
- Autores
 - Benalcazar Palacios, Marco Enrique; Pagnuco, Inti Anabela; Comas, Diego Sebastián; Corva, Pablo Marcelo; Meschino, Gustavo Javier; Brun, Marcel; Ballarin, Virginia Laura
 - Año de publicación
 - 2014
 - Idioma
 - inglés
 - Tipo de recurso
 - artículo
 - Estado
 - versión publicada
 - Descripción
 - Several current research projects are focused on the creation of haplotype maps to identify and describe common genetic variation in some species. Studies on haplotype maps are key in understanding how natural selection has produced genomic differences between subspecies of a given species. Important insight can be obtained by determining which variations in the genotype are associated with important phenotypical differences between individuals. Pattern recognition theory and machine learning techniques are useful tools to reveal this connection from a large amount of data provided by haplotype maps. In this work, we applied discrete classifiers and feature selection techniques for the prediction of cattle coat color from genotypes. We compared the performance of different classification rules and showed the feasibility of this approach for the prediction of phenotype based on genotype.
Fil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina. Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación. Guayaquil; Ecuador
Fil: Pagnuco, Inti Anabela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Comas, Diego Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Corva, Pablo Marcelo. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Meschino, Gustavo Javier. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Eléctrica. Laboratorio de Bioingeniería; Argentina
Fil: Brun, Marcel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Ballarin, Virginia Laura. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina - Materia
 - 
            
        Genotype
Single Nucleotide Polymorphism
Pattern Recognition
Coat Color - Nivel de accesibilidad
 - acceso abierto
 - Condiciones de uso
 - https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
 - Repositorio
 .jpg)
- Institución
 - Consejo Nacional de Investigaciones Científicas y Técnicas
 - OAI Identificador
 - oai:ri.conicet.gov.ar:11336/35261
 
Ver los metadatos del registro completo
| id | 
                                CONICETDig_6266e5d0a7d38e69c4b67a41b981768c | 
      
|---|---|
| oai_identifier_str | 
                                oai:ri.conicet.gov.ar:11336/35261 | 
      
| network_acronym_str | 
                                CONICETDig | 
      
| repository_id_str | 
                                3498 | 
      
| network_name_str | 
                                CONICET Digital (CONICET) | 
      
| spelling | 
                                Classification of Cattle Coat Color Based on Genotype Using Pattern Recognition MethodsBenalcazar Palacios, Marco EnriquePagnuco, Inti AnabelaComas, Diego SebastiánCorva, Pablo MarceloMeschino, Gustavo JavierBrun, MarcelBallarin, Virginia LauraGenotypeSingle Nucleotide PolymorphismPattern RecognitionCoat Colorhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Several current research projects are focused on the creation of haplotype maps to identify and describe common genetic variation in some species. Studies on haplotype maps are key in understanding how natural selection has produced genomic differences between subspecies of a given species. Important insight can be obtained by determining which variations in the genotype are associated with important phenotypical differences between individuals. Pattern recognition theory and machine learning techniques are useful tools to reveal this connection from a large amount of data provided by haplotype maps. In this work, we applied discrete classifiers and feature selection techniques for the prediction of cattle coat color from genotypes. We compared the performance of different classification rules and showed the feasibility of this approach for the prediction of phenotype based on genotype.Fil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina. Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación. Guayaquil; EcuadorFil: Pagnuco, Inti Anabela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Comas, Diego Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Corva, Pablo Marcelo. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Meschino, Gustavo Javier. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Eléctrica. Laboratorio de Bioingeniería; ArgentinaFil: Brun, Marcel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Ballarin, Virginia Laura. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaInternational Federation for Medical & Biological Engineering2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/35261Benalcazar Palacios, Marco Enrique; Pagnuco, Inti Anabela; Comas, Diego Sebastián; Corva, Pablo Marcelo; Meschino, Gustavo Javier; et al.; Classification of Cattle Coat Color Based on Genotype Using Pattern Recognition Methods; International Federation for Medical & Biological Engineering; Ifmbe Proceedings; 2014; 10-2014; 671-6741680-0737CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-13117-7_171info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-319-13117-7_171info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:15:55Zoai:ri.conicet.gov.ar:11336/35261instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:15:56.08CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse | 
      
| dc.title.none.fl_str_mv | 
                                Classification of Cattle Coat Color Based on Genotype Using Pattern Recognition Methods | 
      
| title | 
                                Classification of Cattle Coat Color Based on Genotype Using Pattern Recognition Methods | 
      
| spellingShingle | 
                                Classification of Cattle Coat Color Based on Genotype Using Pattern Recognition Methods Benalcazar Palacios, Marco Enrique Genotype Single Nucleotide Polymorphism Pattern Recognition Coat Color  | 
      
| title_short | 
                                Classification of Cattle Coat Color Based on Genotype Using Pattern Recognition Methods | 
      
| title_full | 
                                Classification of Cattle Coat Color Based on Genotype Using Pattern Recognition Methods | 
      
| title_fullStr | 
                                Classification of Cattle Coat Color Based on Genotype Using Pattern Recognition Methods | 
      
| title_full_unstemmed | 
                                Classification of Cattle Coat Color Based on Genotype Using Pattern Recognition Methods | 
      
| title_sort | 
                                Classification of Cattle Coat Color Based on Genotype Using Pattern Recognition Methods | 
      
| dc.creator.none.fl_str_mv | 
                                Benalcazar Palacios, Marco Enrique Pagnuco, Inti Anabela Comas, Diego Sebastián Corva, Pablo Marcelo Meschino, Gustavo Javier Brun, Marcel Ballarin, Virginia Laura  | 
      
| author | 
                                Benalcazar Palacios, Marco Enrique | 
      
| author_facet | 
                                Benalcazar Palacios, Marco Enrique Pagnuco, Inti Anabela Comas, Diego Sebastián Corva, Pablo Marcelo Meschino, Gustavo Javier Brun, Marcel Ballarin, Virginia Laura  | 
      
| author_role | 
                                author | 
      
| author2 | 
                                Pagnuco, Inti Anabela Comas, Diego Sebastián Corva, Pablo Marcelo Meschino, Gustavo Javier Brun, Marcel Ballarin, Virginia Laura  | 
      
| author2_role | 
                                author author author author author author  | 
      
| dc.subject.none.fl_str_mv | 
                                Genotype Single Nucleotide Polymorphism Pattern Recognition Coat Color  | 
      
| topic | 
                                Genotype Single Nucleotide Polymorphism Pattern Recognition Coat Color  | 
      
| purl_subject.fl_str_mv | 
                                https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1  | 
      
| dc.description.none.fl_txt_mv | 
                                Several current research projects are focused on the creation of haplotype maps to identify and describe common genetic variation in some species. Studies on haplotype maps are key in understanding how natural selection has produced genomic differences between subspecies of a given species. Important insight can be obtained by determining which variations in the genotype are associated with important phenotypical differences between individuals. Pattern recognition theory and machine learning techniques are useful tools to reveal this connection from a large amount of data provided by haplotype maps. In this work, we applied discrete classifiers and feature selection techniques for the prediction of cattle coat color from genotypes. We compared the performance of different classification rules and showed the feasibility of this approach for the prediction of phenotype based on genotype. Fil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina. Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación. Guayaquil; Ecuador Fil: Pagnuco, Inti Anabela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina Fil: Comas, Diego Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina Fil: Corva, Pablo Marcelo. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina Fil: Meschino, Gustavo Javier. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Eléctrica. Laboratorio de Bioingeniería; Argentina Fil: Brun, Marcel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina Fil: Ballarin, Virginia Laura. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina  | 
      
| description | 
                                Several current research projects are focused on the creation of haplotype maps to identify and describe common genetic variation in some species. Studies on haplotype maps are key in understanding how natural selection has produced genomic differences between subspecies of a given species. Important insight can be obtained by determining which variations in the genotype are associated with important phenotypical differences between individuals. Pattern recognition theory and machine learning techniques are useful tools to reveal this connection from a large amount of data provided by haplotype maps. In this work, we applied discrete classifiers and feature selection techniques for the prediction of cattle coat color from genotypes. We compared the performance of different classification rules and showed the feasibility of this approach for the prediction of phenotype based on genotype. | 
      
| publishDate | 
                                2014 | 
      
| dc.date.none.fl_str_mv | 
                                2014-10 | 
      
| dc.type.none.fl_str_mv | 
                                info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo  | 
      
| format | 
                                article | 
      
| status_str | 
                                publishedVersion | 
      
| dc.identifier.none.fl_str_mv | 
                                http://hdl.handle.net/11336/35261 Benalcazar Palacios, Marco Enrique; Pagnuco, Inti Anabela; Comas, Diego Sebastián; Corva, Pablo Marcelo; Meschino, Gustavo Javier; et al.; Classification of Cattle Coat Color Based on Genotype Using Pattern Recognition Methods; International Federation for Medical & Biological Engineering; Ifmbe Proceedings; 2014; 10-2014; 671-674 1680-0737 CONICET Digital CONICET  | 
      
| url | 
                                http://hdl.handle.net/11336/35261 | 
      
| identifier_str_mv | 
                                Benalcazar Palacios, Marco Enrique; Pagnuco, Inti Anabela; Comas, Diego Sebastián; Corva, Pablo Marcelo; Meschino, Gustavo Javier; et al.; Classification of Cattle Coat Color Based on Genotype Using Pattern Recognition Methods; International Federation for Medical & Biological Engineering; Ifmbe Proceedings; 2014; 10-2014; 671-674 1680-0737 CONICET Digital CONICET  | 
      
| dc.language.none.fl_str_mv | 
                                eng | 
      
| language | 
                                eng | 
      
| dc.relation.none.fl_str_mv | 
                                info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-13117-7_171 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-319-13117-7_171  | 
      
| dc.rights.none.fl_str_mv | 
                                info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  | 
      
| eu_rights_str_mv | 
                                openAccess | 
      
| rights_invalid_str_mv | 
                                https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | 
      
| dc.format.none.fl_str_mv | 
                                application/pdf application/pdf  | 
      
| dc.publisher.none.fl_str_mv | 
                                International Federation for Medical & Biological Engineering | 
      
| publisher.none.fl_str_mv | 
                                International Federation for Medical & Biological Engineering | 
      
| dc.source.none.fl_str_mv | 
                                reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas  | 
      
| reponame_str | 
                                CONICET Digital (CONICET) | 
      
| collection | 
                                CONICET Digital (CONICET) | 
      
| instname_str | 
                                Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.name.fl_str_mv | 
                                CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.mail.fl_str_mv | 
                                dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar | 
      
| _version_ | 
                                1847427025191567360 | 
      
| score | 
                                13.10058 |