Métodos de selección de predictores para la construcción de modelos de riesgo de enfermedad en cultivos a partir de variables climáticas

Autores
Suarez, Franco Marcelo; Giannini Kurina, Franca; Bruno, Cecilia Ines; Rodriguez Pardina, Patricia; Giménez, María de la Paz; Reyna, Pablo Gastón; Torrico, Karina; Balzarini, Monica Graciela
Año de publicación
2021
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
La alta dimensionalidad y la correlación entre las múltiples variables candidatas a predictoras para la estimación de un modelo estadístico capaz de predecir la enfermedad de un cultivo en función del ambiente determina la necesidad de recurrir a herramientas metodológicas estadísticas que permitan reducir la dimensionalidad. El objetivo de este trabajo fue comparar el desempeño de métodos de selección de variables en su capacidad para detectar variables climáticas relevantes para la construcción de un modelo logístico que será usado para la predicción de probabilidad de presencia de enfermedad en un patosistema. En este trabajo se compararon tres métodos de selección de variables: Método de Filtrado (F), algoritmo genético (AG) y Boruta (B), en tres patosistemas (MRCV en maíz, Begomovirus en poroto y en soja). Las variables seleccionadas por cada método fueron sometidas a un análisis de componentes principales (ACP) para una nueva reducción de dimensión y obtención de variables sintéticas no correlacionadas. El desempeño de los métodos comparados se evaluó mediante la estimación de la precisión, especificidad y sensibilidad para un modelo lineal predictivo. B y F fueron más eficientes en la predicción. La combinación de estos con el ACP aumentó la eficiencia del modelo de predicción.
Fil: Suarez, Franco Marcelo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina
Fil: Giannini Kurina, Franca. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
Fil: Bruno, Cecilia Ines. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
Fil: Rodriguez Pardina, Patricia. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; Argentina
Fil: Giménez, María de la Paz. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; Argentina
Fil: Reyna, Pablo Gastón. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; Argentina
Fil: Torrico, Karina. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; Argentina
Fil: Balzarini, Monica Graciela. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
50ª Jornadas Argentinas de Informática
Argentina
Sociedad Argentina de Informática
Instituto Nacional de Tecnología Agropecuaria
Materia
BORUTA
ALGORITMO GENETICO
FILTRADO
ANALSIS COMPONENTES PRINCIPALES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/249280

id CONICETDig_62163d830591e616510d192c33711fb7
oai_identifier_str oai:ri.conicet.gov.ar:11336/249280
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Métodos de selección de predictores para la construcción de modelos de riesgo de enfermedad en cultivos a partir de variables climáticasSuarez, Franco MarceloGiannini Kurina, FrancaBruno, Cecilia InesRodriguez Pardina, PatriciaGiménez, María de la PazReyna, Pablo GastónTorrico, KarinaBalzarini, Monica GracielaBORUTAALGORITMO GENETICOFILTRADOANALSIS COMPONENTES PRINCIPALEShttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4La alta dimensionalidad y la correlación entre las múltiples variables candidatas a predictoras para la estimación de un modelo estadístico capaz de predecir la enfermedad de un cultivo en función del ambiente determina la necesidad de recurrir a herramientas metodológicas estadísticas que permitan reducir la dimensionalidad. El objetivo de este trabajo fue comparar el desempeño de métodos de selección de variables en su capacidad para detectar variables climáticas relevantes para la construcción de un modelo logístico que será usado para la predicción de probabilidad de presencia de enfermedad en un patosistema. En este trabajo se compararon tres métodos de selección de variables: Método de Filtrado (F), algoritmo genético (AG) y Boruta (B), en tres patosistemas (MRCV en maíz, Begomovirus en poroto y en soja). Las variables seleccionadas por cada método fueron sometidas a un análisis de componentes principales (ACP) para una nueva reducción de dimensión y obtención de variables sintéticas no correlacionadas. El desempeño de los métodos comparados se evaluó mediante la estimación de la precisión, especificidad y sensibilidad para un modelo lineal predictivo. B y F fueron más eficientes en la predicción. La combinación de estos con el ACP aumentó la eficiencia del modelo de predicción.Fil: Suarez, Franco Marcelo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; ArgentinaFil: Giannini Kurina, Franca. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; ArgentinaFil: Bruno, Cecilia Ines. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; ArgentinaFil: Rodriguez Pardina, Patricia. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; ArgentinaFil: Giménez, María de la Paz. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; ArgentinaFil: Reyna, Pablo Gastón. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; ArgentinaFil: Torrico, Karina. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; ArgentinaFil: Balzarini, Monica Graciela. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina50ª Jornadas Argentinas de InformáticaArgentinaSociedad Argentina de InformáticaInstituto Nacional de Tecnología AgropecuariaSociedad Argentina de Informática2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectJornadaJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/249280Métodos de selección de predictores para la construcción de modelos de riesgo de enfermedad en cultivos a partir de variables climáticas; 50ª Jornadas Argentinas de Informática; Argentina; 2021; 2019-2192525-0949CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://50jaiio.sadio.org.ar/pdfs/cai/CAI-28.pdfNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:14Zoai:ri.conicet.gov.ar:11336/249280instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:14.378CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Métodos de selección de predictores para la construcción de modelos de riesgo de enfermedad en cultivos a partir de variables climáticas
title Métodos de selección de predictores para la construcción de modelos de riesgo de enfermedad en cultivos a partir de variables climáticas
spellingShingle Métodos de selección de predictores para la construcción de modelos de riesgo de enfermedad en cultivos a partir de variables climáticas
Suarez, Franco Marcelo
BORUTA
ALGORITMO GENETICO
FILTRADO
ANALSIS COMPONENTES PRINCIPALES
title_short Métodos de selección de predictores para la construcción de modelos de riesgo de enfermedad en cultivos a partir de variables climáticas
title_full Métodos de selección de predictores para la construcción de modelos de riesgo de enfermedad en cultivos a partir de variables climáticas
title_fullStr Métodos de selección de predictores para la construcción de modelos de riesgo de enfermedad en cultivos a partir de variables climáticas
title_full_unstemmed Métodos de selección de predictores para la construcción de modelos de riesgo de enfermedad en cultivos a partir de variables climáticas
title_sort Métodos de selección de predictores para la construcción de modelos de riesgo de enfermedad en cultivos a partir de variables climáticas
dc.creator.none.fl_str_mv Suarez, Franco Marcelo
Giannini Kurina, Franca
Bruno, Cecilia Ines
Rodriguez Pardina, Patricia
Giménez, María de la Paz
Reyna, Pablo Gastón
Torrico, Karina
Balzarini, Monica Graciela
author Suarez, Franco Marcelo
author_facet Suarez, Franco Marcelo
Giannini Kurina, Franca
Bruno, Cecilia Ines
Rodriguez Pardina, Patricia
Giménez, María de la Paz
Reyna, Pablo Gastón
Torrico, Karina
Balzarini, Monica Graciela
author_role author
author2 Giannini Kurina, Franca
Bruno, Cecilia Ines
Rodriguez Pardina, Patricia
Giménez, María de la Paz
Reyna, Pablo Gastón
Torrico, Karina
Balzarini, Monica Graciela
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv BORUTA
ALGORITMO GENETICO
FILTRADO
ANALSIS COMPONENTES PRINCIPALES
topic BORUTA
ALGORITMO GENETICO
FILTRADO
ANALSIS COMPONENTES PRINCIPALES
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv La alta dimensionalidad y la correlación entre las múltiples variables candidatas a predictoras para la estimación de un modelo estadístico capaz de predecir la enfermedad de un cultivo en función del ambiente determina la necesidad de recurrir a herramientas metodológicas estadísticas que permitan reducir la dimensionalidad. El objetivo de este trabajo fue comparar el desempeño de métodos de selección de variables en su capacidad para detectar variables climáticas relevantes para la construcción de un modelo logístico que será usado para la predicción de probabilidad de presencia de enfermedad en un patosistema. En este trabajo se compararon tres métodos de selección de variables: Método de Filtrado (F), algoritmo genético (AG) y Boruta (B), en tres patosistemas (MRCV en maíz, Begomovirus en poroto y en soja). Las variables seleccionadas por cada método fueron sometidas a un análisis de componentes principales (ACP) para una nueva reducción de dimensión y obtención de variables sintéticas no correlacionadas. El desempeño de los métodos comparados se evaluó mediante la estimación de la precisión, especificidad y sensibilidad para un modelo lineal predictivo. B y F fueron más eficientes en la predicción. La combinación de estos con el ACP aumentó la eficiencia del modelo de predicción.
Fil: Suarez, Franco Marcelo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina
Fil: Giannini Kurina, Franca. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
Fil: Bruno, Cecilia Ines. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
Fil: Rodriguez Pardina, Patricia. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; Argentina
Fil: Giménez, María de la Paz. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; Argentina
Fil: Reyna, Pablo Gastón. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; Argentina
Fil: Torrico, Karina. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola.; Argentina
Fil: Balzarini, Monica Graciela. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
50ª Jornadas Argentinas de Informática
Argentina
Sociedad Argentina de Informática
Instituto Nacional de Tecnología Agropecuaria
description La alta dimensionalidad y la correlación entre las múltiples variables candidatas a predictoras para la estimación de un modelo estadístico capaz de predecir la enfermedad de un cultivo en función del ambiente determina la necesidad de recurrir a herramientas metodológicas estadísticas que permitan reducir la dimensionalidad. El objetivo de este trabajo fue comparar el desempeño de métodos de selección de variables en su capacidad para detectar variables climáticas relevantes para la construcción de un modelo logístico que será usado para la predicción de probabilidad de presencia de enfermedad en un patosistema. En este trabajo se compararon tres métodos de selección de variables: Método de Filtrado (F), algoritmo genético (AG) y Boruta (B), en tres patosistemas (MRCV en maíz, Begomovirus en poroto y en soja). Las variables seleccionadas por cada método fueron sometidas a un análisis de componentes principales (ACP) para una nueva reducción de dimensión y obtención de variables sintéticas no correlacionadas. El desempeño de los métodos comparados se evaluó mediante la estimación de la precisión, especificidad y sensibilidad para un modelo lineal predictivo. B y F fueron más eficientes en la predicción. La combinación de estos con el ACP aumentó la eficiencia del modelo de predicción.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Jornada
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/249280
Métodos de selección de predictores para la construcción de modelos de riesgo de enfermedad en cultivos a partir de variables climáticas; 50ª Jornadas Argentinas de Informática; Argentina; 2021; 2019-219
2525-0949
CONICET Digital
CONICET
url http://hdl.handle.net/11336/249280
identifier_str_mv Métodos de selección de predictores para la construcción de modelos de riesgo de enfermedad en cultivos a partir de variables climáticas; 50ª Jornadas Argentinas de Informática; Argentina; 2021; 2019-219
2525-0949
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://50jaiio.sadio.org.ar/pdfs/cai/CAI-28.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Nacional
dc.publisher.none.fl_str_mv Sociedad Argentina de Informática
publisher.none.fl_str_mv Sociedad Argentina de Informática
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613628100083712
score 13.070432