On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence
- Autores
- González, C.A.; Dmitruk, Pablo Ariel; Mininni, Pablo Daniel; Matthaeus, W.H.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The effect of compressibility in a charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the flow compressibility effect over the particle dynamics, we performed different numerical experiments: an incompressible case and two weak compressible cases with Mach number M = 0.1 and M = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. What we call protons and electrons are test particles with scales comparable to (for protons) and much smaller than (for electrons) the dissipative scale of MHD turbulence, maintaining the correct mass ratio
" role="presentation">m e / m i me/mi . For these test particles, we show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the other hand, electrons remain magnetized and display an almost adiabatic motion, with no effect of compressibility observed. Another set of numerical experiments takes into account two fluid modifications, namely, electric field due to Hall effect and electron pressure gradient. We show that the electron pressure has an important contribution to electron acceleration allowing highly parallel energization. In contrast, no significant effect of these additional terms is observed for the protons.
Fil: González, C.A.. Universidad de Buenos Aires; Argentina
Fil: Dmitruk, Pablo Ariel. Universidad de Buenos Aires; Argentina
Fil: Mininni, Pablo Daniel. Universidad de Buenos Aires; Argentina
Fil: Matthaeus, W.H.. Bartol Research Institute; - Materia
-
Test Particles
Particle Acceleration
Magnetohydrodynamics
Turbulence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/48963
Ver los metadatos del registro completo
id |
CONICETDig_618414fd2e6baaf1b94f570674dcf511 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/48963 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulenceGonzález, C.A.Dmitruk, Pablo ArielMininni, Pablo DanielMatthaeus, W.H.Test ParticlesParticle AccelerationMagnetohydrodynamicsTurbulencehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The effect of compressibility in a charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the flow compressibility effect over the particle dynamics, we performed different numerical experiments: an incompressible case and two weak compressible cases with Mach number <i>M</i> = 0.1 and <i>M</i> = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. What we call protons and electrons are test particles with scales comparable to (for protons) and much smaller than (for electrons) the dissipative scale of MHD turbulence, maintaining the correct mass ratio <span class="equationTd"><span class="MathJax" id="MathJax-Element-1-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" altimg="eq-00001.gif"><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>/</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math>" role="presentation"><nobr><span class="math" id="MathJax-Span-1" style="width: 2.761em; display: inline-block;"><span style="display: inline-block; position: relative; width: 2.371em; height: 0px; font-size: 116%;"><span style="position: absolute; clip: rect(1.738em, 1002.37em, 2.83em, -1000em); top: -2.543em; left: 0em;"><span class="mrow" id="MathJax-Span-2"><span class="mrow" id="MathJax-Span-3"><span class="msub" id="MathJax-Span-4"><span style="display: inline-block; position: relative; width: 1.111em; height: 0px;"><span style="position: absolute; clip: rect(3.438em, 1000.7em, 4.147em, -1000em); top: -4.009em; left: 0em;"><span class="mrow" id="MathJax-Span-5"><span class="mi" id="MathJax-Span-6" style="font-family: STIXGeneral; font-style: italic;">m</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /><span style="position: absolute; top: -3.859em; left: 0.722em;"><span class="mrow" id="MathJax-Span-7"><span class="mi" id="MathJax-Span-8" style="font-size: 70.7%; font-family: STIXGeneral; font-style: italic;">e</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /></span></span><span class="mo" id="MathJax-Span-9" style="font-family: STIXGeneral;">/</span><span class="msub" id="MathJax-Span-10"><span style="display: inline-block; position: relative; width: 0.994em; height: 0px;"><span style="position: absolute; clip: rect(3.438em, 1000.7em, 4.147em, -1000em); top: -4.009em; left: 0em;"><span class="mrow" id="MathJax-Span-11"><span class="mi" id="MathJax-Span-12" style="font-family: STIXGeneral; font-style: italic;">m</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /><span style="position: absolute; top: -3.859em; left: 0.722em;"><span class="mrow" id="MathJax-Span-13"><span class="mi" id="MathJax-Span-14" style="font-size: 70.7%; font-family: STIXGeneral; font-style: italic;">i</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.543em;" /></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.233em; border-left: 0px solid; width: 0px; height: 1.067em;" /></span></span></span></span></span></span></nobr></span></span><span class="equationTd"><span class="formulaLabel">. For these test particles, we show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the other hand, electrons remain magnetized and display an almost adiabatic motion, with no effect of compressibility observed. Another set of numerical experiments takes into account two fluid modifications, namely, electric field due to Hall effect and electron pressure gradient. We show that the electron pressure has an important contribution to electron acceleration allowing highly parallel energization. In contrast, no significant effect of these additional terms is observed for the protons.</span></span>Fil: González, C.A.. Universidad de Buenos Aires; ArgentinaFil: Dmitruk, Pablo Ariel. Universidad de Buenos Aires; ArgentinaFil: Mininni, Pablo Daniel. Universidad de Buenos Aires; ArgentinaFil: Matthaeus, W.H.. Bartol Research Institute;American Institute of Physics2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48963González, C.A.; Dmitruk, Pablo Ariel; Mininni, Pablo Daniel; Matthaeus, W.H.; On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence; American Institute of Physics; Physics Of Plasmas; 23; 8; 8-2016; 823051-8230581070-664XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/full/10.1063/1.4960681info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4960681info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:54:12Zoai:ri.conicet.gov.ar:11336/48963instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:54:12.96CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence |
title |
On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence |
spellingShingle |
On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence González, C.A. Test Particles Particle Acceleration Magnetohydrodynamics Turbulence |
title_short |
On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence |
title_full |
On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence |
title_fullStr |
On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence |
title_full_unstemmed |
On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence |
title_sort |
On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence |
dc.creator.none.fl_str_mv |
González, C.A. Dmitruk, Pablo Ariel Mininni, Pablo Daniel Matthaeus, W.H. |
author |
González, C.A. |
author_facet |
González, C.A. Dmitruk, Pablo Ariel Mininni, Pablo Daniel Matthaeus, W.H. |
author_role |
author |
author2 |
Dmitruk, Pablo Ariel Mininni, Pablo Daniel Matthaeus, W.H. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Test Particles Particle Acceleration Magnetohydrodynamics Turbulence |
topic |
Test Particles Particle Acceleration Magnetohydrodynamics Turbulence |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The effect of compressibility in a charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the flow compressibility effect over the particle dynamics, we performed different numerical experiments: an incompressible case and two weak compressible cases with Mach number <i>M</i> = 0.1 and <i>M</i> = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. What we call protons and electrons are test particles with scales comparable to (for protons) and much smaller than (for electrons) the dissipative scale of MHD turbulence, maintaining the correct mass ratio <span class="equationTd"><span class="MathJax" id="MathJax-Element-1-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" altimg="eq-00001.gif"><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>/</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math>" role="presentation"><nobr><span class="math" id="MathJax-Span-1" style="width: 2.761em; display: inline-block;"><span style="display: inline-block; position: relative; width: 2.371em; height: 0px; font-size: 116%;"><span style="position: absolute; clip: rect(1.738em, 1002.37em, 2.83em, -1000em); top: -2.543em; left: 0em;"><span class="mrow" id="MathJax-Span-2"><span class="mrow" id="MathJax-Span-3"><span class="msub" id="MathJax-Span-4"><span style="display: inline-block; position: relative; width: 1.111em; height: 0px;"><span style="position: absolute; clip: rect(3.438em, 1000.7em, 4.147em, -1000em); top: -4.009em; left: 0em;"><span class="mrow" id="MathJax-Span-5"><span class="mi" id="MathJax-Span-6" style="font-family: STIXGeneral; font-style: italic;">m</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /><span style="position: absolute; top: -3.859em; left: 0.722em;"><span class="mrow" id="MathJax-Span-7"><span class="mi" id="MathJax-Span-8" style="font-size: 70.7%; font-family: STIXGeneral; font-style: italic;">e</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /></span></span><span class="mo" id="MathJax-Span-9" style="font-family: STIXGeneral;">/</span><span class="msub" id="MathJax-Span-10"><span style="display: inline-block; position: relative; width: 0.994em; height: 0px;"><span style="position: absolute; clip: rect(3.438em, 1000.7em, 4.147em, -1000em); top: -4.009em; left: 0em;"><span class="mrow" id="MathJax-Span-11"><span class="mi" id="MathJax-Span-12" style="font-family: STIXGeneral; font-style: italic;">m</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /><span style="position: absolute; top: -3.859em; left: 0.722em;"><span class="mrow" id="MathJax-Span-13"><span class="mi" id="MathJax-Span-14" style="font-size: 70.7%; font-family: STIXGeneral; font-style: italic;">i</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.543em;" /></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.233em; border-left: 0px solid; width: 0px; height: 1.067em;" /></span></span></span></span></span></span></nobr></span></span><span class="equationTd"><span class="formulaLabel">. For these test particles, we show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the other hand, electrons remain magnetized and display an almost adiabatic motion, with no effect of compressibility observed. Another set of numerical experiments takes into account two fluid modifications, namely, electric field due to Hall effect and electron pressure gradient. We show that the electron pressure has an important contribution to electron acceleration allowing highly parallel energization. In contrast, no significant effect of these additional terms is observed for the protons.</span></span> Fil: González, C.A.. Universidad de Buenos Aires; Argentina Fil: Dmitruk, Pablo Ariel. Universidad de Buenos Aires; Argentina Fil: Mininni, Pablo Daniel. Universidad de Buenos Aires; Argentina Fil: Matthaeus, W.H.. Bartol Research Institute; |
description |
The effect of compressibility in a charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the flow compressibility effect over the particle dynamics, we performed different numerical experiments: an incompressible case and two weak compressible cases with Mach number <i>M</i> = 0.1 and <i>M</i> = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. What we call protons and electrons are test particles with scales comparable to (for protons) and much smaller than (for electrons) the dissipative scale of MHD turbulence, maintaining the correct mass ratio <span class="equationTd"><span class="MathJax" id="MathJax-Element-1-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" altimg="eq-00001.gif"><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>/</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math>" role="presentation"><nobr><span class="math" id="MathJax-Span-1" style="width: 2.761em; display: inline-block;"><span style="display: inline-block; position: relative; width: 2.371em; height: 0px; font-size: 116%;"><span style="position: absolute; clip: rect(1.738em, 1002.37em, 2.83em, -1000em); top: -2.543em; left: 0em;"><span class="mrow" id="MathJax-Span-2"><span class="mrow" id="MathJax-Span-3"><span class="msub" id="MathJax-Span-4"><span style="display: inline-block; position: relative; width: 1.111em; height: 0px;"><span style="position: absolute; clip: rect(3.438em, 1000.7em, 4.147em, -1000em); top: -4.009em; left: 0em;"><span class="mrow" id="MathJax-Span-5"><span class="mi" id="MathJax-Span-6" style="font-family: STIXGeneral; font-style: italic;">m</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /><span style="position: absolute; top: -3.859em; left: 0.722em;"><span class="mrow" id="MathJax-Span-7"><span class="mi" id="MathJax-Span-8" style="font-size: 70.7%; font-family: STIXGeneral; font-style: italic;">e</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /></span></span><span class="mo" id="MathJax-Span-9" style="font-family: STIXGeneral;">/</span><span class="msub" id="MathJax-Span-10"><span style="display: inline-block; position: relative; width: 0.994em; height: 0px;"><span style="position: absolute; clip: rect(3.438em, 1000.7em, 4.147em, -1000em); top: -4.009em; left: 0em;"><span class="mrow" id="MathJax-Span-11"><span class="mi" id="MathJax-Span-12" style="font-family: STIXGeneral; font-style: italic;">m</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /><span style="position: absolute; top: -3.859em; left: 0.722em;"><span class="mrow" id="MathJax-Span-13"><span class="mi" id="MathJax-Span-14" style="font-size: 70.7%; font-family: STIXGeneral; font-style: italic;">i</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.543em;" /></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.233em; border-left: 0px solid; width: 0px; height: 1.067em;" /></span></span></span></span></span></span></nobr></span></span><span class="equationTd"><span class="formulaLabel">. For these test particles, we show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the other hand, electrons remain magnetized and display an almost adiabatic motion, with no effect of compressibility observed. Another set of numerical experiments takes into account two fluid modifications, namely, electric field due to Hall effect and electron pressure gradient. We show that the electron pressure has an important contribution to electron acceleration allowing highly parallel energization. In contrast, no significant effect of these additional terms is observed for the protons.</span></span> |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/48963 González, C.A.; Dmitruk, Pablo Ariel; Mininni, Pablo Daniel; Matthaeus, W.H.; On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence; American Institute of Physics; Physics Of Plasmas; 23; 8; 8-2016; 823051-823058 1070-664X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/48963 |
identifier_str_mv |
González, C.A.; Dmitruk, Pablo Ariel; Mininni, Pablo Daniel; Matthaeus, W.H.; On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence; American Institute of Physics; Physics Of Plasmas; 23; 8; 8-2016; 823051-823058 1070-664X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/full/10.1063/1.4960681 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4960681 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083073741946880 |
score |
13.22299 |