On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence

Autores
González, C.A.; Dmitruk, Pablo Ariel; Mininni, Pablo Daniel; Matthaeus, W.H.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The effect of compressibility in a charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the flow compressibility effect over the particle dynamics, we performed different numerical experiments: an incompressible case and two weak compressible cases with Mach number M = 0.1 and M = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. What we call protons and electrons are test particles with scales comparable to (for protons) and much smaller than (for electrons) the dissipative scale of MHD turbulence, maintaining the correct mass ratio me/mi" role="presentation">me/mi. For these test particles, we show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the other hand, electrons remain magnetized and display an almost adiabatic motion, with no effect of compressibility observed. Another set of numerical experiments takes into account two fluid modifications, namely, electric field due to Hall effect and electron pressure gradient. We show that the electron pressure has an important contribution to electron acceleration allowing highly parallel energization. In contrast, no significant effect of these additional terms is observed for the protons.
Fil: González, C.A.. Universidad de Buenos Aires; Argentina
Fil: Dmitruk, Pablo Ariel. Universidad de Buenos Aires; Argentina
Fil: Mininni, Pablo Daniel. Universidad de Buenos Aires; Argentina
Fil: Matthaeus, W.H.. Bartol Research Institute;
Materia
Test Particles
Particle Acceleration
Magnetohydrodynamics
Turbulence
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/48963

id CONICETDig_618414fd2e6baaf1b94f570674dcf511
oai_identifier_str oai:ri.conicet.gov.ar:11336/48963
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulenceGonzález, C.A.Dmitruk, Pablo ArielMininni, Pablo DanielMatthaeus, W.H.Test ParticlesParticle AccelerationMagnetohydrodynamicsTurbulencehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The effect of compressibility in a charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the flow compressibility effect over the particle dynamics, we performed different numerical experiments: an incompressible case and two weak compressible cases with Mach number <i>M</i> = 0.1 and <i>M</i> = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. What we call protons and electrons are test particles with scales comparable to (for protons) and much smaller than (for electrons) the dissipative scale of MHD turbulence, maintaining the correct mass ratio <span class="equationTd"><span class="MathJax" id="MathJax-Element-1-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" altimg="eq-00001.gif"><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>/</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math>" role="presentation"><nobr><span class="math" id="MathJax-Span-1" style="width: 2.761em; display: inline-block;"><span style="display: inline-block; position: relative; width: 2.371em; height: 0px; font-size: 116%;"><span style="position: absolute; clip: rect(1.738em, 1002.37em, 2.83em, -1000em); top: -2.543em; left: 0em;"><span class="mrow" id="MathJax-Span-2"><span class="mrow" id="MathJax-Span-3"><span class="msub" id="MathJax-Span-4"><span style="display: inline-block; position: relative; width: 1.111em; height: 0px;"><span style="position: absolute; clip: rect(3.438em, 1000.7em, 4.147em, -1000em); top: -4.009em; left: 0em;"><span class="mrow" id="MathJax-Span-5"><span class="mi" id="MathJax-Span-6" style="font-family: STIXGeneral; font-style: italic;">m</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /><span style="position: absolute; top: -3.859em; left: 0.722em;"><span class="mrow" id="MathJax-Span-7"><span class="mi" id="MathJax-Span-8" style="font-size: 70.7%; font-family: STIXGeneral; font-style: italic;">e</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /></span></span><span class="mo" id="MathJax-Span-9" style="font-family: STIXGeneral;">/</span><span class="msub" id="MathJax-Span-10"><span style="display: inline-block; position: relative; width: 0.994em; height: 0px;"><span style="position: absolute; clip: rect(3.438em, 1000.7em, 4.147em, -1000em); top: -4.009em; left: 0em;"><span class="mrow" id="MathJax-Span-11"><span class="mi" id="MathJax-Span-12" style="font-family: STIXGeneral; font-style: italic;">m</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /><span style="position: absolute; top: -3.859em; left: 0.722em;"><span class="mrow" id="MathJax-Span-13"><span class="mi" id="MathJax-Span-14" style="font-size: 70.7%; font-family: STIXGeneral; font-style: italic;">i</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.543em;" /></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.233em; border-left: 0px solid; width: 0px; height: 1.067em;" /></span></span></span></span></span></span></nobr></span></span><span class="equationTd"><span class="formulaLabel">. For these test particles, we show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the other hand, electrons remain magnetized and display an almost adiabatic motion, with no effect of compressibility observed. Another set of numerical experiments takes into account two fluid modifications, namely, electric field due to Hall effect and electron pressure gradient. We show that the electron pressure has an important contribution to electron acceleration allowing highly parallel energization. In contrast, no significant effect of these additional terms is observed for the protons.</span></span>Fil: González, C.A.. Universidad de Buenos Aires; ArgentinaFil: Dmitruk, Pablo Ariel. Universidad de Buenos Aires; ArgentinaFil: Mininni, Pablo Daniel. Universidad de Buenos Aires; ArgentinaFil: Matthaeus, W.H.. Bartol Research Institute;American Institute of Physics2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48963González, C.A.; Dmitruk, Pablo Ariel; Mininni, Pablo Daniel; Matthaeus, W.H.; On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence; American Institute of Physics; Physics Of Plasmas; 23; 8; 8-2016; 823051-8230581070-664XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/full/10.1063/1.4960681info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4960681info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:54:12Zoai:ri.conicet.gov.ar:11336/48963instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:54:12.96CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence
title On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence
spellingShingle On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence
González, C.A.
Test Particles
Particle Acceleration
Magnetohydrodynamics
Turbulence
title_short On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence
title_full On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence
title_fullStr On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence
title_full_unstemmed On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence
title_sort On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence
dc.creator.none.fl_str_mv González, C.A.
Dmitruk, Pablo Ariel
Mininni, Pablo Daniel
Matthaeus, W.H.
author González, C.A.
author_facet González, C.A.
Dmitruk, Pablo Ariel
Mininni, Pablo Daniel
Matthaeus, W.H.
author_role author
author2 Dmitruk, Pablo Ariel
Mininni, Pablo Daniel
Matthaeus, W.H.
author2_role author
author
author
dc.subject.none.fl_str_mv Test Particles
Particle Acceleration
Magnetohydrodynamics
Turbulence
topic Test Particles
Particle Acceleration
Magnetohydrodynamics
Turbulence
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The effect of compressibility in a charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the flow compressibility effect over the particle dynamics, we performed different numerical experiments: an incompressible case and two weak compressible cases with Mach number <i>M</i> = 0.1 and <i>M</i> = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. What we call protons and electrons are test particles with scales comparable to (for protons) and much smaller than (for electrons) the dissipative scale of MHD turbulence, maintaining the correct mass ratio <span class="equationTd"><span class="MathJax" id="MathJax-Element-1-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" altimg="eq-00001.gif"><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>/</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math>" role="presentation"><nobr><span class="math" id="MathJax-Span-1" style="width: 2.761em; display: inline-block;"><span style="display: inline-block; position: relative; width: 2.371em; height: 0px; font-size: 116%;"><span style="position: absolute; clip: rect(1.738em, 1002.37em, 2.83em, -1000em); top: -2.543em; left: 0em;"><span class="mrow" id="MathJax-Span-2"><span class="mrow" id="MathJax-Span-3"><span class="msub" id="MathJax-Span-4"><span style="display: inline-block; position: relative; width: 1.111em; height: 0px;"><span style="position: absolute; clip: rect(3.438em, 1000.7em, 4.147em, -1000em); top: -4.009em; left: 0em;"><span class="mrow" id="MathJax-Span-5"><span class="mi" id="MathJax-Span-6" style="font-family: STIXGeneral; font-style: italic;">m</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /><span style="position: absolute; top: -3.859em; left: 0.722em;"><span class="mrow" id="MathJax-Span-7"><span class="mi" id="MathJax-Span-8" style="font-size: 70.7%; font-family: STIXGeneral; font-style: italic;">e</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /></span></span><span class="mo" id="MathJax-Span-9" style="font-family: STIXGeneral;">/</span><span class="msub" id="MathJax-Span-10"><span style="display: inline-block; position: relative; width: 0.994em; height: 0px;"><span style="position: absolute; clip: rect(3.438em, 1000.7em, 4.147em, -1000em); top: -4.009em; left: 0em;"><span class="mrow" id="MathJax-Span-11"><span class="mi" id="MathJax-Span-12" style="font-family: STIXGeneral; font-style: italic;">m</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /><span style="position: absolute; top: -3.859em; left: 0.722em;"><span class="mrow" id="MathJax-Span-13"><span class="mi" id="MathJax-Span-14" style="font-size: 70.7%; font-family: STIXGeneral; font-style: italic;">i</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.543em;" /></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.233em; border-left: 0px solid; width: 0px; height: 1.067em;" /></span></span></span></span></span></span></nobr></span></span><span class="equationTd"><span class="formulaLabel">. For these test particles, we show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the other hand, electrons remain magnetized and display an almost adiabatic motion, with no effect of compressibility observed. Another set of numerical experiments takes into account two fluid modifications, namely, electric field due to Hall effect and electron pressure gradient. We show that the electron pressure has an important contribution to electron acceleration allowing highly parallel energization. In contrast, no significant effect of these additional terms is observed for the protons.</span></span>
Fil: González, C.A.. Universidad de Buenos Aires; Argentina
Fil: Dmitruk, Pablo Ariel. Universidad de Buenos Aires; Argentina
Fil: Mininni, Pablo Daniel. Universidad de Buenos Aires; Argentina
Fil: Matthaeus, W.H.. Bartol Research Institute;
description The effect of compressibility in a charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the flow compressibility effect over the particle dynamics, we performed different numerical experiments: an incompressible case and two weak compressible cases with Mach number <i>M</i> = 0.1 and <i>M</i> = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. What we call protons and electrons are test particles with scales comparable to (for protons) and much smaller than (for electrons) the dissipative scale of MHD turbulence, maintaining the correct mass ratio <span class="equationTd"><span class="MathJax" id="MathJax-Element-1-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" altimg="eq-00001.gif"><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>/</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math>" role="presentation"><nobr><span class="math" id="MathJax-Span-1" style="width: 2.761em; display: inline-block;"><span style="display: inline-block; position: relative; width: 2.371em; height: 0px; font-size: 116%;"><span style="position: absolute; clip: rect(1.738em, 1002.37em, 2.83em, -1000em); top: -2.543em; left: 0em;"><span class="mrow" id="MathJax-Span-2"><span class="mrow" id="MathJax-Span-3"><span class="msub" id="MathJax-Span-4"><span style="display: inline-block; position: relative; width: 1.111em; height: 0px;"><span style="position: absolute; clip: rect(3.438em, 1000.7em, 4.147em, -1000em); top: -4.009em; left: 0em;"><span class="mrow" id="MathJax-Span-5"><span class="mi" id="MathJax-Span-6" style="font-family: STIXGeneral; font-style: italic;">m</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /><span style="position: absolute; top: -3.859em; left: 0.722em;"><span class="mrow" id="MathJax-Span-7"><span class="mi" id="MathJax-Span-8" style="font-size: 70.7%; font-family: STIXGeneral; font-style: italic;">e</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /></span></span><span class="mo" id="MathJax-Span-9" style="font-family: STIXGeneral;">/</span><span class="msub" id="MathJax-Span-10"><span style="display: inline-block; position: relative; width: 0.994em; height: 0px;"><span style="position: absolute; clip: rect(3.438em, 1000.7em, 4.147em, -1000em); top: -4.009em; left: 0em;"><span class="mrow" id="MathJax-Span-11"><span class="mi" id="MathJax-Span-12" style="font-family: STIXGeneral; font-style: italic;">m</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /><span style="position: absolute; top: -3.859em; left: 0.722em;"><span class="mrow" id="MathJax-Span-13"><span class="mi" id="MathJax-Span-14" style="font-size: 70.7%; font-family: STIXGeneral; font-style: italic;">i</span></span><span style="display: inline-block; width: 0px; height: 4.009em;" /></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.543em;" /></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.233em; border-left: 0px solid; width: 0px; height: 1.067em;" /></span></span></span></span></span></span></nobr></span></span><span class="equationTd"><span class="formulaLabel">. For these test particles, we show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the other hand, electrons remain magnetized and display an almost adiabatic motion, with no effect of compressibility observed. Another set of numerical experiments takes into account two fluid modifications, namely, electric field due to Hall effect and electron pressure gradient. We show that the electron pressure has an important contribution to electron acceleration allowing highly parallel energization. In contrast, no significant effect of these additional terms is observed for the protons.</span></span>
publishDate 2016
dc.date.none.fl_str_mv 2016-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/48963
González, C.A.; Dmitruk, Pablo Ariel; Mininni, Pablo Daniel; Matthaeus, W.H.; On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence; American Institute of Physics; Physics Of Plasmas; 23; 8; 8-2016; 823051-823058
1070-664X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/48963
identifier_str_mv González, C.A.; Dmitruk, Pablo Ariel; Mininni, Pablo Daniel; Matthaeus, W.H.; On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence; American Institute of Physics; Physics Of Plasmas; 23; 8; 8-2016; 823051-823058
1070-664X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/full/10.1063/1.4960681
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4960681
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083073741946880
score 13.22299