Test-particle acceleration in a hierarchical three-dimensional turbulence model

Autores
Dalena, S.; Rapazzo, A. F.; Dmitruk, Pablo Ariel; Greco, A.; Matthaeus, W. H.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The acceleration of charged particles is relevant to the solar corona over a broad range of scales and energies. High-energy particles are usually detected in concomitance with large energy release events like solar eruptions and flares. Nevertheless, acceleration can occur at smaller scales, characterized by dynamical activity near current sheets. To gain insight into the complex scenario of coronal charged particle acceleration, we investigate the properties of acceleration with a test-particle approach using three-dimensional magnetohydrodynamic (MHD) models. These are obtained from direct solutions of the reduced MHD equations, well suited for a plasma embedded in a strong axial magnetic field, relevant to the inner heliosphere. A multi-box, multiscale technique is used to solve the equations of motion for protons. This method allows us to resolve an extended range of scales present in the system, namely, from the ion inertial scale of the order of a meter up to macroscopic scales of the order of 10 km (1/100th of the outer scale of the system). This new technique is useful to identify the mechanisms that, acting at different scales, are responsible for acceleration to high energies of a small fraction of the particles in the coronal plasma. We report results that describe acceleration at different stages over a broad range of time, length, and energy scales.
Fil: Dalena, S.. University of Delaware; Estados Unidos. Universita della Calabria; Italia
Fil: Rapazzo, A. F.. University of Delaware; Estados Unidos
Fil: Dmitruk, Pablo Ariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Greco, A.. Universita della Calabria; Italia
Fil: Matthaeus, W. H.. University of Delaware; Estados Unidos
Materia
Turbulence
Test-particles
Magnetohydrodynamics
Numerical simulations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17906

id CONICETDig_3e964d186e136cc6583dd07f4397358d
oai_identifier_str oai:ri.conicet.gov.ar:11336/17906
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Test-particle acceleration in a hierarchical three-dimensional turbulence modelDalena, S.Rapazzo, A. F.Dmitruk, Pablo ArielGreco, A.Matthaeus, W. H.TurbulenceTest-particlesMagnetohydrodynamicsNumerical simulationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The acceleration of charged particles is relevant to the solar corona over a broad range of scales and energies. High-energy particles are usually detected in concomitance with large energy release events like solar eruptions and flares. Nevertheless, acceleration can occur at smaller scales, characterized by dynamical activity near current sheets. To gain insight into the complex scenario of coronal charged particle acceleration, we investigate the properties of acceleration with a test-particle approach using three-dimensional magnetohydrodynamic (MHD) models. These are obtained from direct solutions of the reduced MHD equations, well suited for a plasma embedded in a strong axial magnetic field, relevant to the inner heliosphere. A multi-box, multiscale technique is used to solve the equations of motion for protons. This method allows us to resolve an extended range of scales present in the system, namely, from the ion inertial scale of the order of a meter up to macroscopic scales of the order of 10 km (1/100th of the outer scale of the system). This new technique is useful to identify the mechanisms that, acting at different scales, are responsible for acceleration to high energies of a small fraction of the particles in the coronal plasma. We report results that describe acceleration at different stages over a broad range of time, length, and energy scales.Fil: Dalena, S.. University of Delaware; Estados Unidos. Universita della Calabria; ItaliaFil: Rapazzo, A. F.. University of Delaware; Estados UnidosFil: Dmitruk, Pablo Ariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Greco, A.. Universita della Calabria; ItaliaFil: Matthaeus, W. H.. University of Delaware; Estados UnidosIop Publishing2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17906Dalena, S.; Rapazzo, A. F.; Dmitruk, Pablo Ariel; Greco, A.; Matthaeus, W. H.; Test-particle acceleration in a hierarchical three-dimensional turbulence model; Iop Publishing; Astrophysical Journal; 783; 2; 2-2014; 1-11; 1430004-637Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/783/2/143info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0004-637X/783/2/143/metainfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1402.3745info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:13:59Zoai:ri.conicet.gov.ar:11336/17906instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:14:00.091CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Test-particle acceleration in a hierarchical three-dimensional turbulence model
title Test-particle acceleration in a hierarchical three-dimensional turbulence model
spellingShingle Test-particle acceleration in a hierarchical three-dimensional turbulence model
Dalena, S.
Turbulence
Test-particles
Magnetohydrodynamics
Numerical simulations
title_short Test-particle acceleration in a hierarchical three-dimensional turbulence model
title_full Test-particle acceleration in a hierarchical three-dimensional turbulence model
title_fullStr Test-particle acceleration in a hierarchical three-dimensional turbulence model
title_full_unstemmed Test-particle acceleration in a hierarchical three-dimensional turbulence model
title_sort Test-particle acceleration in a hierarchical three-dimensional turbulence model
dc.creator.none.fl_str_mv Dalena, S.
Rapazzo, A. F.
Dmitruk, Pablo Ariel
Greco, A.
Matthaeus, W. H.
author Dalena, S.
author_facet Dalena, S.
Rapazzo, A. F.
Dmitruk, Pablo Ariel
Greco, A.
Matthaeus, W. H.
author_role author
author2 Rapazzo, A. F.
Dmitruk, Pablo Ariel
Greco, A.
Matthaeus, W. H.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Turbulence
Test-particles
Magnetohydrodynamics
Numerical simulations
topic Turbulence
Test-particles
Magnetohydrodynamics
Numerical simulations
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The acceleration of charged particles is relevant to the solar corona over a broad range of scales and energies. High-energy particles are usually detected in concomitance with large energy release events like solar eruptions and flares. Nevertheless, acceleration can occur at smaller scales, characterized by dynamical activity near current sheets. To gain insight into the complex scenario of coronal charged particle acceleration, we investigate the properties of acceleration with a test-particle approach using three-dimensional magnetohydrodynamic (MHD) models. These are obtained from direct solutions of the reduced MHD equations, well suited for a plasma embedded in a strong axial magnetic field, relevant to the inner heliosphere. A multi-box, multiscale technique is used to solve the equations of motion for protons. This method allows us to resolve an extended range of scales present in the system, namely, from the ion inertial scale of the order of a meter up to macroscopic scales of the order of 10 km (1/100th of the outer scale of the system). This new technique is useful to identify the mechanisms that, acting at different scales, are responsible for acceleration to high energies of a small fraction of the particles in the coronal plasma. We report results that describe acceleration at different stages over a broad range of time, length, and energy scales.
Fil: Dalena, S.. University of Delaware; Estados Unidos. Universita della Calabria; Italia
Fil: Rapazzo, A. F.. University of Delaware; Estados Unidos
Fil: Dmitruk, Pablo Ariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Greco, A.. Universita della Calabria; Italia
Fil: Matthaeus, W. H.. University of Delaware; Estados Unidos
description The acceleration of charged particles is relevant to the solar corona over a broad range of scales and energies. High-energy particles are usually detected in concomitance with large energy release events like solar eruptions and flares. Nevertheless, acceleration can occur at smaller scales, characterized by dynamical activity near current sheets. To gain insight into the complex scenario of coronal charged particle acceleration, we investigate the properties of acceleration with a test-particle approach using three-dimensional magnetohydrodynamic (MHD) models. These are obtained from direct solutions of the reduced MHD equations, well suited for a plasma embedded in a strong axial magnetic field, relevant to the inner heliosphere. A multi-box, multiscale technique is used to solve the equations of motion for protons. This method allows us to resolve an extended range of scales present in the system, namely, from the ion inertial scale of the order of a meter up to macroscopic scales of the order of 10 km (1/100th of the outer scale of the system). This new technique is useful to identify the mechanisms that, acting at different scales, are responsible for acceleration to high energies of a small fraction of the particles in the coronal plasma. We report results that describe acceleration at different stages over a broad range of time, length, and energy scales.
publishDate 2014
dc.date.none.fl_str_mv 2014-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17906
Dalena, S.; Rapazzo, A. F.; Dmitruk, Pablo Ariel; Greco, A.; Matthaeus, W. H.; Test-particle acceleration in a hierarchical three-dimensional turbulence model; Iop Publishing; Astrophysical Journal; 783; 2; 2-2014; 1-11; 143
0004-637X
url http://hdl.handle.net/11336/17906
identifier_str_mv Dalena, S.; Rapazzo, A. F.; Dmitruk, Pablo Ariel; Greco, A.; Matthaeus, W. H.; Test-particle acceleration in a hierarchical three-dimensional turbulence model; Iop Publishing; Astrophysical Journal; 783; 2; 2-2014; 1-11; 143
0004-637X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/783/2/143
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0004-637X/783/2/143/meta
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1402.3745
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Iop Publishing
publisher.none.fl_str_mv Iop Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782545605165056
score 12.982451