Chemotaxis and Wsp-like pathways affect biofilm formation in Halomonas titanicae KHS3

Autores
Balmaceda, Rocio Soledad; Ramos Ricciutti, Fernando E.; Studdert, Claudia Alicia; Herrera Seitz, Karina
Año de publicación
2021
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Halomonas titanicae KHS3 is a moderately halophilic bacteria isolated from seawater of Mar del Plata harbour. During the analysis of its genomic sequence, two chemosensory clusters were identified. Cluster 1 includes genes and organization similar to those of the canonical Escherichia coli chemotaxis gene cluster and is involved in Halomonas chemotaxis. Cluster 2 encodes a Wsp-like pathway, whose genes and organization resemble those of the homonymous Pseudomonas aeruginosa cluster. In this pathway, a chemoreceptor-controlled histidine kinase activates a diguanylate cyclase (DGC) by phosphorylation, and the downstream response includes higher levels of biofilm. In this work, the participation of both chemosensory pathways in motility and biofilm formation was analyzed. Cluster 1 function was disrupted by a deletion in its histidine kinase gene, cheA1 (che1- mutant). The wsp-like pathway was targeted in two different ways. On one hand, Htc10 (cluster 2 chemoreceptor) was inactivated by a plasmid insertion (che2- mutant). On the other, the methylesterase gene cheB2 was deleted in order to assess the effect of an overmethylation (and presumably over-activation) of the pathway on the phenotype (che2++ mutant). Both che1- and che2++ mutants showed a significantly exacerbated biofilm formation when compared to wild-type strain when using the crystal violet assay. However, only the che2++ cells had a wrinkly aspect in agar medium, suggesting that the increased ability to form biofilm of the two strains was due to different mechanisms. Chemotaxis behavior, as assessed in soft agar plates, was severely affected in both hyperbiofilm mutants. However, when compared by video tracking analysis using SMT software, the motility of che1- mutant was indistinguishable from the wild-type strain, whereas che2++ showed a remarkable decrease in the number of motile cells. Substrate adherence after a short centrifugation was significantly increased in che2++ cells, and long-term biofilm assays also showed increased persistence of adhered cells in this mutant strain. Likewise, Congo Red staining of macrocolonies revealed an increased production of exopolysaccharides in this strain. All these features are consistent with a role of cluster 2 in biofilm formation as described for the Pseudomonas wsp pathway. Consistently, the che2-mutant showed a reduced ability to form biofilm under the same circumstances. The hyperbiofilm phenotype of the che1- mutant remains intriguing: complementation with very low levels of CheA1 restores the wild-type biofilm behavior even though chemotaxis is not fully restored. Up to now, we cannot find the mechanism underlying the increased biofilm in the absence of the chemotaxis kinase. Disruption of the cluster 2 chemoreceptor gene in the che1- mutant will help to elucidate whether or not the hyperbiofilm phenotype is dependent on the presence of cluster 2.
Fil: Balmaceda, Rocio Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina
Fil: Ramos Ricciutti, Fernando E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina
Fil: Studdert, Claudia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina
Fil: Herrera Seitz, Karina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
Congreso Conjunto SAIB-SAIGE 2021: LVII Reunión Anual de la Sociedad Argentina de Investigaciones en Bioquímica y Biología Molecular (SAIB). XVI Congreso Anual de la Asociación Civil de Microbiología General (SAMIGE)
Argentina
Sociedad Argentina de Investigaciones en Bioquímica y Biología Molecular
Asociación Civil de Microbiología General
Materia
HALOMONAS
QUIMIOTAXIS
WSP-LIKE
BIOFILM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/217108

id CONICETDig_6177470378ae40b65203024a1c79eb8f
oai_identifier_str oai:ri.conicet.gov.ar:11336/217108
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Chemotaxis and Wsp-like pathways affect biofilm formation in Halomonas titanicae KHS3Balmaceda, Rocio SoledadRamos Ricciutti, Fernando E.Studdert, Claudia AliciaHerrera Seitz, KarinaHALOMONASQUIMIOTAXISWSP-LIKEBIOFILMhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Halomonas titanicae KHS3 is a moderately halophilic bacteria isolated from seawater of Mar del Plata harbour. During the analysis of its genomic sequence, two chemosensory clusters were identified. Cluster 1 includes genes and organization similar to those of the canonical Escherichia coli chemotaxis gene cluster and is involved in Halomonas chemotaxis. Cluster 2 encodes a Wsp-like pathway, whose genes and organization resemble those of the homonymous Pseudomonas aeruginosa cluster. In this pathway, a chemoreceptor-controlled histidine kinase activates a diguanylate cyclase (DGC) by phosphorylation, and the downstream response includes higher levels of biofilm. In this work, the participation of both chemosensory pathways in motility and biofilm formation was analyzed. Cluster 1 function was disrupted by a deletion in its histidine kinase gene, cheA1 (che1- mutant). The wsp-like pathway was targeted in two different ways. On one hand, Htc10 (cluster 2 chemoreceptor) was inactivated by a plasmid insertion (che2- mutant). On the other, the methylesterase gene cheB2 was deleted in order to assess the effect of an overmethylation (and presumably over-activation) of the pathway on the phenotype (che2++ mutant). Both che1- and che2++ mutants showed a significantly exacerbated biofilm formation when compared to wild-type strain when using the crystal violet assay. However, only the che2++ cells had a wrinkly aspect in agar medium, suggesting that the increased ability to form biofilm of the two strains was due to different mechanisms. Chemotaxis behavior, as assessed in soft agar plates, was severely affected in both hyperbiofilm mutants. However, when compared by video tracking analysis using SMT software, the motility of che1- mutant was indistinguishable from the wild-type strain, whereas che2++ showed a remarkable decrease in the number of motile cells. Substrate adherence after a short centrifugation was significantly increased in che2++ cells, and long-term biofilm assays also showed increased persistence of adhered cells in this mutant strain. Likewise, Congo Red staining of macrocolonies revealed an increased production of exopolysaccharides in this strain. All these features are consistent with a role of cluster 2 in biofilm formation as described for the Pseudomonas wsp pathway. Consistently, the che2-mutant showed a reduced ability to form biofilm under the same circumstances. The hyperbiofilm phenotype of the che1- mutant remains intriguing: complementation with very low levels of CheA1 restores the wild-type biofilm behavior even though chemotaxis is not fully restored. Up to now, we cannot find the mechanism underlying the increased biofilm in the absence of the chemotaxis kinase. Disruption of the cluster 2 chemoreceptor gene in the che1- mutant will help to elucidate whether or not the hyperbiofilm phenotype is dependent on the presence of cluster 2.Fil: Balmaceda, Rocio Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Ramos Ricciutti, Fernando E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Studdert, Claudia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Herrera Seitz, Karina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaCongreso Conjunto SAIB-SAIGE 2021: LVII Reunión Anual de la Sociedad Argentina de Investigaciones en Bioquímica y Biología Molecular (SAIB). XVI Congreso Anual de la Asociación Civil de Microbiología General (SAMIGE)ArgentinaSociedad Argentina de Investigaciones en Bioquímica y Biología MolecularAsociación Civil de Microbiología GeneralTech Science Press2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/217108Chemotaxis and Wsp-like pathways affect biofilm formation in Halomonas titanicae KHS3; Congreso Conjunto SAIB-SAIGE 2021: LVII Reunión Anual de la Sociedad Argentina de Investigaciones en Bioquímica y Biología Molecular (SAIB). XVI Congreso Anual de la Asociación Civil de Microbiología General (SAMIGE); Argentina; 2021; 156-1560327-95451667-5746CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://www.saib.org.ar/sites/default/files/TSP_BIOCELL_46213-SAIB-SAMIGE%202021.pdfNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:16Zoai:ri.conicet.gov.ar:11336/217108instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:16.782CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Chemotaxis and Wsp-like pathways affect biofilm formation in Halomonas titanicae KHS3
title Chemotaxis and Wsp-like pathways affect biofilm formation in Halomonas titanicae KHS3
spellingShingle Chemotaxis and Wsp-like pathways affect biofilm formation in Halomonas titanicae KHS3
Balmaceda, Rocio Soledad
HALOMONAS
QUIMIOTAXIS
WSP-LIKE
BIOFILM
title_short Chemotaxis and Wsp-like pathways affect biofilm formation in Halomonas titanicae KHS3
title_full Chemotaxis and Wsp-like pathways affect biofilm formation in Halomonas titanicae KHS3
title_fullStr Chemotaxis and Wsp-like pathways affect biofilm formation in Halomonas titanicae KHS3
title_full_unstemmed Chemotaxis and Wsp-like pathways affect biofilm formation in Halomonas titanicae KHS3
title_sort Chemotaxis and Wsp-like pathways affect biofilm formation in Halomonas titanicae KHS3
dc.creator.none.fl_str_mv Balmaceda, Rocio Soledad
Ramos Ricciutti, Fernando E.
Studdert, Claudia Alicia
Herrera Seitz, Karina
author Balmaceda, Rocio Soledad
author_facet Balmaceda, Rocio Soledad
Ramos Ricciutti, Fernando E.
Studdert, Claudia Alicia
Herrera Seitz, Karina
author_role author
author2 Ramos Ricciutti, Fernando E.
Studdert, Claudia Alicia
Herrera Seitz, Karina
author2_role author
author
author
dc.subject.none.fl_str_mv HALOMONAS
QUIMIOTAXIS
WSP-LIKE
BIOFILM
topic HALOMONAS
QUIMIOTAXIS
WSP-LIKE
BIOFILM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Halomonas titanicae KHS3 is a moderately halophilic bacteria isolated from seawater of Mar del Plata harbour. During the analysis of its genomic sequence, two chemosensory clusters were identified. Cluster 1 includes genes and organization similar to those of the canonical Escherichia coli chemotaxis gene cluster and is involved in Halomonas chemotaxis. Cluster 2 encodes a Wsp-like pathway, whose genes and organization resemble those of the homonymous Pseudomonas aeruginosa cluster. In this pathway, a chemoreceptor-controlled histidine kinase activates a diguanylate cyclase (DGC) by phosphorylation, and the downstream response includes higher levels of biofilm. In this work, the participation of both chemosensory pathways in motility and biofilm formation was analyzed. Cluster 1 function was disrupted by a deletion in its histidine kinase gene, cheA1 (che1- mutant). The wsp-like pathway was targeted in two different ways. On one hand, Htc10 (cluster 2 chemoreceptor) was inactivated by a plasmid insertion (che2- mutant). On the other, the methylesterase gene cheB2 was deleted in order to assess the effect of an overmethylation (and presumably over-activation) of the pathway on the phenotype (che2++ mutant). Both che1- and che2++ mutants showed a significantly exacerbated biofilm formation when compared to wild-type strain when using the crystal violet assay. However, only the che2++ cells had a wrinkly aspect in agar medium, suggesting that the increased ability to form biofilm of the two strains was due to different mechanisms. Chemotaxis behavior, as assessed in soft agar plates, was severely affected in both hyperbiofilm mutants. However, when compared by video tracking analysis using SMT software, the motility of che1- mutant was indistinguishable from the wild-type strain, whereas che2++ showed a remarkable decrease in the number of motile cells. Substrate adherence after a short centrifugation was significantly increased in che2++ cells, and long-term biofilm assays also showed increased persistence of adhered cells in this mutant strain. Likewise, Congo Red staining of macrocolonies revealed an increased production of exopolysaccharides in this strain. All these features are consistent with a role of cluster 2 in biofilm formation as described for the Pseudomonas wsp pathway. Consistently, the che2-mutant showed a reduced ability to form biofilm under the same circumstances. The hyperbiofilm phenotype of the che1- mutant remains intriguing: complementation with very low levels of CheA1 restores the wild-type biofilm behavior even though chemotaxis is not fully restored. Up to now, we cannot find the mechanism underlying the increased biofilm in the absence of the chemotaxis kinase. Disruption of the cluster 2 chemoreceptor gene in the che1- mutant will help to elucidate whether or not the hyperbiofilm phenotype is dependent on the presence of cluster 2.
Fil: Balmaceda, Rocio Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina
Fil: Ramos Ricciutti, Fernando E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina
Fil: Studdert, Claudia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina
Fil: Herrera Seitz, Karina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
Congreso Conjunto SAIB-SAIGE 2021: LVII Reunión Anual de la Sociedad Argentina de Investigaciones en Bioquímica y Biología Molecular (SAIB). XVI Congreso Anual de la Asociación Civil de Microbiología General (SAMIGE)
Argentina
Sociedad Argentina de Investigaciones en Bioquímica y Biología Molecular
Asociación Civil de Microbiología General
description Halomonas titanicae KHS3 is a moderately halophilic bacteria isolated from seawater of Mar del Plata harbour. During the analysis of its genomic sequence, two chemosensory clusters were identified. Cluster 1 includes genes and organization similar to those of the canonical Escherichia coli chemotaxis gene cluster and is involved in Halomonas chemotaxis. Cluster 2 encodes a Wsp-like pathway, whose genes and organization resemble those of the homonymous Pseudomonas aeruginosa cluster. In this pathway, a chemoreceptor-controlled histidine kinase activates a diguanylate cyclase (DGC) by phosphorylation, and the downstream response includes higher levels of biofilm. In this work, the participation of both chemosensory pathways in motility and biofilm formation was analyzed. Cluster 1 function was disrupted by a deletion in its histidine kinase gene, cheA1 (che1- mutant). The wsp-like pathway was targeted in two different ways. On one hand, Htc10 (cluster 2 chemoreceptor) was inactivated by a plasmid insertion (che2- mutant). On the other, the methylesterase gene cheB2 was deleted in order to assess the effect of an overmethylation (and presumably over-activation) of the pathway on the phenotype (che2++ mutant). Both che1- and che2++ mutants showed a significantly exacerbated biofilm formation when compared to wild-type strain when using the crystal violet assay. However, only the che2++ cells had a wrinkly aspect in agar medium, suggesting that the increased ability to form biofilm of the two strains was due to different mechanisms. Chemotaxis behavior, as assessed in soft agar plates, was severely affected in both hyperbiofilm mutants. However, when compared by video tracking analysis using SMT software, the motility of che1- mutant was indistinguishable from the wild-type strain, whereas che2++ showed a remarkable decrease in the number of motile cells. Substrate adherence after a short centrifugation was significantly increased in che2++ cells, and long-term biofilm assays also showed increased persistence of adhered cells in this mutant strain. Likewise, Congo Red staining of macrocolonies revealed an increased production of exopolysaccharides in this strain. All these features are consistent with a role of cluster 2 in biofilm formation as described for the Pseudomonas wsp pathway. Consistently, the che2-mutant showed a reduced ability to form biofilm under the same circumstances. The hyperbiofilm phenotype of the che1- mutant remains intriguing: complementation with very low levels of CheA1 restores the wild-type biofilm behavior even though chemotaxis is not fully restored. Up to now, we cannot find the mechanism underlying the increased biofilm in the absence of the chemotaxis kinase. Disruption of the cluster 2 chemoreceptor gene in the che1- mutant will help to elucidate whether or not the hyperbiofilm phenotype is dependent on the presence of cluster 2.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Congreso
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/217108
Chemotaxis and Wsp-like pathways affect biofilm formation in Halomonas titanicae KHS3; Congreso Conjunto SAIB-SAIGE 2021: LVII Reunión Anual de la Sociedad Argentina de Investigaciones en Bioquímica y Biología Molecular (SAIB). XVI Congreso Anual de la Asociación Civil de Microbiología General (SAMIGE); Argentina; 2021; 156-156
0327-9545
1667-5746
CONICET Digital
CONICET
url http://hdl.handle.net/11336/217108
identifier_str_mv Chemotaxis and Wsp-like pathways affect biofilm formation in Halomonas titanicae KHS3; Congreso Conjunto SAIB-SAIGE 2021: LVII Reunión Anual de la Sociedad Argentina de Investigaciones en Bioquímica y Biología Molecular (SAIB). XVI Congreso Anual de la Asociación Civil de Microbiología General (SAMIGE); Argentina; 2021; 156-156
0327-9545
1667-5746
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.saib.org.ar/sites/default/files/TSP_BIOCELL_46213-SAIB-SAMIGE%202021.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Nacional
dc.publisher.none.fl_str_mv Tech Science Press
publisher.none.fl_str_mv Tech Science Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269686940565504
score 13.13397