SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks

Autores
Olorin, Emily; O'Brien, Kevin T.; Palopoli, Nicolás; Pérez Bercoff, Åsa; Shields, Denis C.; Edwards, Richard J.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Short linear motifs (SLiMs) are small protein sequence patterns that mediate a large number of critical protein-protein interactions, involved in processes such as complex formation, signal transduction, localisation and stabilisation. SLiMs show rapid evolutionary dynamics and are frequently the targets of molecular mimicry by pathogens. Identifying enriched sequence patterns due to convergent evolution in non-homologous proteins has proven to be a successful strategy for computational SLiM prediction. Tools of the SLiMSuite package use this strategy, using a statistical model to identify SLiM enrichment based on the evolutionary relationships, amino acid composition and predicted disorder of the input proteins. The quality of input data is critical for successful SLiM prediction. Cytoscape provides a user-friendly, interactive environment to explore interaction networks and select proteins based on common features, such as shared interaction partners. SLiMScape embeds tools of the SLiMSuite package for de novo SLiM discovery (SLiMFinder and QSLiMFinder) and identifying occurrences/enrichment of known SLiMs (SLiMProb) within this interactive framework. SLiMScape makes it easier to (1) generate high quality hypothesis-driven datasets for these tools, and (2) visualise predicted SLiM occurrences within the context of the network. To generate new predictions, users can select nodes from a protein network or provide a set of Uniprot identifiers. SLiMProb also requires additional query motif input. Jobs are then run remotely on the SLiMSuite server (http://rest.slimsuite.unsw.edu.au) for subsequent retrieval and visualisation. SLiMScape can also be used to retrieve and visualise results from jobs run directly on the server. SLiMScape and SLiMSuite are open source and freely available via GitHub under GNU licenses.
Fil: Olorin, Emily. University of New South Wales; Australia
Fil: O'Brien, Kevin T.. Universidad de Dublin; Irlanda
Fil: Palopoli, Nicolás. Fundación Instituto Leloir; Argentina. University of Southampton; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pérez Bercoff, Åsa. University of New South Wales; Australia
Fil: Shields, Denis C.. Universidad de Dublin; Irlanda
Fil: Edwards, Richard J.. University of Southampton; Reino Unido. University of New South Wales; Australia
Materia
SHORT LINEAR MOTIFS
SLIMSCAPE
CYTOSCAPE
PROTEIN INTERACTION NETWORK
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/113226

id CONICETDig_616261f6e600aa6c0cd0137c5e2f98af
oai_identifier_str oai:ri.conicet.gov.ar:11336/113226
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networksOlorin, EmilyO'Brien, Kevin T.Palopoli, NicolásPérez Bercoff, ÅsaShields, Denis C.Edwards, Richard J.SHORT LINEAR MOTIFSSLIMSCAPECYTOSCAPEPROTEIN INTERACTION NETWORKhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Short linear motifs (SLiMs) are small protein sequence patterns that mediate a large number of critical protein-protein interactions, involved in processes such as complex formation, signal transduction, localisation and stabilisation. SLiMs show rapid evolutionary dynamics and are frequently the targets of molecular mimicry by pathogens. Identifying enriched sequence patterns due to convergent evolution in non-homologous proteins has proven to be a successful strategy for computational SLiM prediction. Tools of the SLiMSuite package use this strategy, using a statistical model to identify SLiM enrichment based on the evolutionary relationships, amino acid composition and predicted disorder of the input proteins. The quality of input data is critical for successful SLiM prediction. Cytoscape provides a user-friendly, interactive environment to explore interaction networks and select proteins based on common features, such as shared interaction partners. SLiMScape embeds tools of the SLiMSuite package for de novo SLiM discovery (SLiMFinder and QSLiMFinder) and identifying occurrences/enrichment of known SLiMs (SLiMProb) within this interactive framework. SLiMScape makes it easier to (1) generate high quality hypothesis-driven datasets for these tools, and (2) visualise predicted SLiM occurrences within the context of the network. To generate new predictions, users can select nodes from a protein network or provide a set of Uniprot identifiers. SLiMProb also requires additional query motif input. Jobs are then run remotely on the SLiMSuite server (http://rest.slimsuite.unsw.edu.au) for subsequent retrieval and visualisation. SLiMScape can also be used to retrieve and visualise results from jobs run directly on the server. SLiMScape and SLiMSuite are open source and freely available via GitHub under GNU licenses.Fil: Olorin, Emily. University of New South Wales; AustraliaFil: O'Brien, Kevin T.. Universidad de Dublin; IrlandaFil: Palopoli, Nicolás. Fundación Instituto Leloir; Argentina. University of Southampton; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pérez Bercoff, Åsa. University of New South Wales; AustraliaFil: Shields, Denis C.. Universidad de Dublin; IrlandaFil: Edwards, Richard J.. University of Southampton; Reino Unido. University of New South Wales; AustraliaF1000 Research Ltd2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113226Olorin, Emily; O'Brien, Kevin T.; Palopoli, Nicolás; Pérez Bercoff, Åsa; Shields, Denis C.; et al.; SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks; F1000 Research Ltd; F1000Research; 4; 477; 8-2015; 1-112046-1402CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.12688/f1000research.6773.1info:eu-repo/semantics/altIdentifier/url/https://f1000research.com/articles/4-477info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:50Zoai:ri.conicet.gov.ar:11336/113226instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:50.969CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks
title SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks
spellingShingle SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks
Olorin, Emily
SHORT LINEAR MOTIFS
SLIMSCAPE
CYTOSCAPE
PROTEIN INTERACTION NETWORK
title_short SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks
title_full SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks
title_fullStr SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks
title_full_unstemmed SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks
title_sort SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks
dc.creator.none.fl_str_mv Olorin, Emily
O'Brien, Kevin T.
Palopoli, Nicolás
Pérez Bercoff, Åsa
Shields, Denis C.
Edwards, Richard J.
author Olorin, Emily
author_facet Olorin, Emily
O'Brien, Kevin T.
Palopoli, Nicolás
Pérez Bercoff, Åsa
Shields, Denis C.
Edwards, Richard J.
author_role author
author2 O'Brien, Kevin T.
Palopoli, Nicolás
Pérez Bercoff, Åsa
Shields, Denis C.
Edwards, Richard J.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv SHORT LINEAR MOTIFS
SLIMSCAPE
CYTOSCAPE
PROTEIN INTERACTION NETWORK
topic SHORT LINEAR MOTIFS
SLIMSCAPE
CYTOSCAPE
PROTEIN INTERACTION NETWORK
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Short linear motifs (SLiMs) are small protein sequence patterns that mediate a large number of critical protein-protein interactions, involved in processes such as complex formation, signal transduction, localisation and stabilisation. SLiMs show rapid evolutionary dynamics and are frequently the targets of molecular mimicry by pathogens. Identifying enriched sequence patterns due to convergent evolution in non-homologous proteins has proven to be a successful strategy for computational SLiM prediction. Tools of the SLiMSuite package use this strategy, using a statistical model to identify SLiM enrichment based on the evolutionary relationships, amino acid composition and predicted disorder of the input proteins. The quality of input data is critical for successful SLiM prediction. Cytoscape provides a user-friendly, interactive environment to explore interaction networks and select proteins based on common features, such as shared interaction partners. SLiMScape embeds tools of the SLiMSuite package for de novo SLiM discovery (SLiMFinder and QSLiMFinder) and identifying occurrences/enrichment of known SLiMs (SLiMProb) within this interactive framework. SLiMScape makes it easier to (1) generate high quality hypothesis-driven datasets for these tools, and (2) visualise predicted SLiM occurrences within the context of the network. To generate new predictions, users can select nodes from a protein network or provide a set of Uniprot identifiers. SLiMProb also requires additional query motif input. Jobs are then run remotely on the SLiMSuite server (http://rest.slimsuite.unsw.edu.au) for subsequent retrieval and visualisation. SLiMScape can also be used to retrieve and visualise results from jobs run directly on the server. SLiMScape and SLiMSuite are open source and freely available via GitHub under GNU licenses.
Fil: Olorin, Emily. University of New South Wales; Australia
Fil: O'Brien, Kevin T.. Universidad de Dublin; Irlanda
Fil: Palopoli, Nicolás. Fundación Instituto Leloir; Argentina. University of Southampton; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pérez Bercoff, Åsa. University of New South Wales; Australia
Fil: Shields, Denis C.. Universidad de Dublin; Irlanda
Fil: Edwards, Richard J.. University of Southampton; Reino Unido. University of New South Wales; Australia
description Short linear motifs (SLiMs) are small protein sequence patterns that mediate a large number of critical protein-protein interactions, involved in processes such as complex formation, signal transduction, localisation and stabilisation. SLiMs show rapid evolutionary dynamics and are frequently the targets of molecular mimicry by pathogens. Identifying enriched sequence patterns due to convergent evolution in non-homologous proteins has proven to be a successful strategy for computational SLiM prediction. Tools of the SLiMSuite package use this strategy, using a statistical model to identify SLiM enrichment based on the evolutionary relationships, amino acid composition and predicted disorder of the input proteins. The quality of input data is critical for successful SLiM prediction. Cytoscape provides a user-friendly, interactive environment to explore interaction networks and select proteins based on common features, such as shared interaction partners. SLiMScape embeds tools of the SLiMSuite package for de novo SLiM discovery (SLiMFinder and QSLiMFinder) and identifying occurrences/enrichment of known SLiMs (SLiMProb) within this interactive framework. SLiMScape makes it easier to (1) generate high quality hypothesis-driven datasets for these tools, and (2) visualise predicted SLiM occurrences within the context of the network. To generate new predictions, users can select nodes from a protein network or provide a set of Uniprot identifiers. SLiMProb also requires additional query motif input. Jobs are then run remotely on the SLiMSuite server (http://rest.slimsuite.unsw.edu.au) for subsequent retrieval and visualisation. SLiMScape can also be used to retrieve and visualise results from jobs run directly on the server. SLiMScape and SLiMSuite are open source and freely available via GitHub under GNU licenses.
publishDate 2015
dc.date.none.fl_str_mv 2015-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/113226
Olorin, Emily; O'Brien, Kevin T.; Palopoli, Nicolás; Pérez Bercoff, Åsa; Shields, Denis C.; et al.; SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks; F1000 Research Ltd; F1000Research; 4; 477; 8-2015; 1-11
2046-1402
CONICET Digital
CONICET
url http://hdl.handle.net/11336/113226
identifier_str_mv Olorin, Emily; O'Brien, Kevin T.; Palopoli, Nicolás; Pérez Bercoff, Åsa; Shields, Denis C.; et al.; SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks; F1000 Research Ltd; F1000Research; 4; 477; 8-2015; 1-11
2046-1402
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.12688/f1000research.6773.1
info:eu-repo/semantics/altIdentifier/url/https://f1000research.com/articles/4-477
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv F1000 Research Ltd
publisher.none.fl_str_mv F1000 Research Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613489818075136
score 13.070432