SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks
- Autores
- Olorin, Emily; O'Brien, Kevin T.; Palopoli, Nicolás; Pérez Bercoff, Åsa; Shields, Denis C.; Edwards, Richard J.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Short linear motifs (SLiMs) are small protein sequence patterns that mediate a large number of critical protein-protein interactions, involved in processes such as complex formation, signal transduction, localisation and stabilisation. SLiMs show rapid evolutionary dynamics and are frequently the targets of molecular mimicry by pathogens. Identifying enriched sequence patterns due to convergent evolution in non-homologous proteins has proven to be a successful strategy for computational SLiM prediction. Tools of the SLiMSuite package use this strategy, using a statistical model to identify SLiM enrichment based on the evolutionary relationships, amino acid composition and predicted disorder of the input proteins. The quality of input data is critical for successful SLiM prediction. Cytoscape provides a user-friendly, interactive environment to explore interaction networks and select proteins based on common features, such as shared interaction partners. SLiMScape embeds tools of the SLiMSuite package for de novo SLiM discovery (SLiMFinder and QSLiMFinder) and identifying occurrences/enrichment of known SLiMs (SLiMProb) within this interactive framework. SLiMScape makes it easier to (1) generate high quality hypothesis-driven datasets for these tools, and (2) visualise predicted SLiM occurrences within the context of the network. To generate new predictions, users can select nodes from a protein network or provide a set of Uniprot identifiers. SLiMProb also requires additional query motif input. Jobs are then run remotely on the SLiMSuite server (http://rest.slimsuite.unsw.edu.au) for subsequent retrieval and visualisation. SLiMScape can also be used to retrieve and visualise results from jobs run directly on the server. SLiMScape and SLiMSuite are open source and freely available via GitHub under GNU licenses.
Fil: Olorin, Emily. University of New South Wales; Australia
Fil: O'Brien, Kevin T.. Universidad de Dublin; Irlanda
Fil: Palopoli, Nicolás. Fundación Instituto Leloir; Argentina. University of Southampton; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pérez Bercoff, Åsa. University of New South Wales; Australia
Fil: Shields, Denis C.. Universidad de Dublin; Irlanda
Fil: Edwards, Richard J.. University of Southampton; Reino Unido. University of New South Wales; Australia - Materia
-
SHORT LINEAR MOTIFS
SLIMSCAPE
CYTOSCAPE
PROTEIN INTERACTION NETWORK - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/113226
Ver los metadatos del registro completo
id |
CONICETDig_616261f6e600aa6c0cd0137c5e2f98af |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/113226 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networksOlorin, EmilyO'Brien, Kevin T.Palopoli, NicolásPérez Bercoff, ÅsaShields, Denis C.Edwards, Richard J.SHORT LINEAR MOTIFSSLIMSCAPECYTOSCAPEPROTEIN INTERACTION NETWORKhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Short linear motifs (SLiMs) are small protein sequence patterns that mediate a large number of critical protein-protein interactions, involved in processes such as complex formation, signal transduction, localisation and stabilisation. SLiMs show rapid evolutionary dynamics and are frequently the targets of molecular mimicry by pathogens. Identifying enriched sequence patterns due to convergent evolution in non-homologous proteins has proven to be a successful strategy for computational SLiM prediction. Tools of the SLiMSuite package use this strategy, using a statistical model to identify SLiM enrichment based on the evolutionary relationships, amino acid composition and predicted disorder of the input proteins. The quality of input data is critical for successful SLiM prediction. Cytoscape provides a user-friendly, interactive environment to explore interaction networks and select proteins based on common features, such as shared interaction partners. SLiMScape embeds tools of the SLiMSuite package for de novo SLiM discovery (SLiMFinder and QSLiMFinder) and identifying occurrences/enrichment of known SLiMs (SLiMProb) within this interactive framework. SLiMScape makes it easier to (1) generate high quality hypothesis-driven datasets for these tools, and (2) visualise predicted SLiM occurrences within the context of the network. To generate new predictions, users can select nodes from a protein network or provide a set of Uniprot identifiers. SLiMProb also requires additional query motif input. Jobs are then run remotely on the SLiMSuite server (http://rest.slimsuite.unsw.edu.au) for subsequent retrieval and visualisation. SLiMScape can also be used to retrieve and visualise results from jobs run directly on the server. SLiMScape and SLiMSuite are open source and freely available via GitHub under GNU licenses.Fil: Olorin, Emily. University of New South Wales; AustraliaFil: O'Brien, Kevin T.. Universidad de Dublin; IrlandaFil: Palopoli, Nicolás. Fundación Instituto Leloir; Argentina. University of Southampton; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pérez Bercoff, Åsa. University of New South Wales; AustraliaFil: Shields, Denis C.. Universidad de Dublin; IrlandaFil: Edwards, Richard J.. University of Southampton; Reino Unido. University of New South Wales; AustraliaF1000 Research Ltd2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113226Olorin, Emily; O'Brien, Kevin T.; Palopoli, Nicolás; Pérez Bercoff, Åsa; Shields, Denis C.; et al.; SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks; F1000 Research Ltd; F1000Research; 4; 477; 8-2015; 1-112046-1402CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.12688/f1000research.6773.1info:eu-repo/semantics/altIdentifier/url/https://f1000research.com/articles/4-477info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:50Zoai:ri.conicet.gov.ar:11336/113226instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:50.969CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks |
title |
SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks |
spellingShingle |
SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks Olorin, Emily SHORT LINEAR MOTIFS SLIMSCAPE CYTOSCAPE PROTEIN INTERACTION NETWORK |
title_short |
SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks |
title_full |
SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks |
title_fullStr |
SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks |
title_full_unstemmed |
SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks |
title_sort |
SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks |
dc.creator.none.fl_str_mv |
Olorin, Emily O'Brien, Kevin T. Palopoli, Nicolás Pérez Bercoff, Åsa Shields, Denis C. Edwards, Richard J. |
author |
Olorin, Emily |
author_facet |
Olorin, Emily O'Brien, Kevin T. Palopoli, Nicolás Pérez Bercoff, Åsa Shields, Denis C. Edwards, Richard J. |
author_role |
author |
author2 |
O'Brien, Kevin T. Palopoli, Nicolás Pérez Bercoff, Åsa Shields, Denis C. Edwards, Richard J. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
SHORT LINEAR MOTIFS SLIMSCAPE CYTOSCAPE PROTEIN INTERACTION NETWORK |
topic |
SHORT LINEAR MOTIFS SLIMSCAPE CYTOSCAPE PROTEIN INTERACTION NETWORK |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Short linear motifs (SLiMs) are small protein sequence patterns that mediate a large number of critical protein-protein interactions, involved in processes such as complex formation, signal transduction, localisation and stabilisation. SLiMs show rapid evolutionary dynamics and are frequently the targets of molecular mimicry by pathogens. Identifying enriched sequence patterns due to convergent evolution in non-homologous proteins has proven to be a successful strategy for computational SLiM prediction. Tools of the SLiMSuite package use this strategy, using a statistical model to identify SLiM enrichment based on the evolutionary relationships, amino acid composition and predicted disorder of the input proteins. The quality of input data is critical for successful SLiM prediction. Cytoscape provides a user-friendly, interactive environment to explore interaction networks and select proteins based on common features, such as shared interaction partners. SLiMScape embeds tools of the SLiMSuite package for de novo SLiM discovery (SLiMFinder and QSLiMFinder) and identifying occurrences/enrichment of known SLiMs (SLiMProb) within this interactive framework. SLiMScape makes it easier to (1) generate high quality hypothesis-driven datasets for these tools, and (2) visualise predicted SLiM occurrences within the context of the network. To generate new predictions, users can select nodes from a protein network or provide a set of Uniprot identifiers. SLiMProb also requires additional query motif input. Jobs are then run remotely on the SLiMSuite server (http://rest.slimsuite.unsw.edu.au) for subsequent retrieval and visualisation. SLiMScape can also be used to retrieve and visualise results from jobs run directly on the server. SLiMScape and SLiMSuite are open source and freely available via GitHub under GNU licenses. Fil: Olorin, Emily. University of New South Wales; Australia Fil: O'Brien, Kevin T.. Universidad de Dublin; Irlanda Fil: Palopoli, Nicolás. Fundación Instituto Leloir; Argentina. University of Southampton; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pérez Bercoff, Åsa. University of New South Wales; Australia Fil: Shields, Denis C.. Universidad de Dublin; Irlanda Fil: Edwards, Richard J.. University of Southampton; Reino Unido. University of New South Wales; Australia |
description |
Short linear motifs (SLiMs) are small protein sequence patterns that mediate a large number of critical protein-protein interactions, involved in processes such as complex formation, signal transduction, localisation and stabilisation. SLiMs show rapid evolutionary dynamics and are frequently the targets of molecular mimicry by pathogens. Identifying enriched sequence patterns due to convergent evolution in non-homologous proteins has proven to be a successful strategy for computational SLiM prediction. Tools of the SLiMSuite package use this strategy, using a statistical model to identify SLiM enrichment based on the evolutionary relationships, amino acid composition and predicted disorder of the input proteins. The quality of input data is critical for successful SLiM prediction. Cytoscape provides a user-friendly, interactive environment to explore interaction networks and select proteins based on common features, such as shared interaction partners. SLiMScape embeds tools of the SLiMSuite package for de novo SLiM discovery (SLiMFinder and QSLiMFinder) and identifying occurrences/enrichment of known SLiMs (SLiMProb) within this interactive framework. SLiMScape makes it easier to (1) generate high quality hypothesis-driven datasets for these tools, and (2) visualise predicted SLiM occurrences within the context of the network. To generate new predictions, users can select nodes from a protein network or provide a set of Uniprot identifiers. SLiMProb also requires additional query motif input. Jobs are then run remotely on the SLiMSuite server (http://rest.slimsuite.unsw.edu.au) for subsequent retrieval and visualisation. SLiMScape can also be used to retrieve and visualise results from jobs run directly on the server. SLiMScape and SLiMSuite are open source and freely available via GitHub under GNU licenses. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/113226 Olorin, Emily; O'Brien, Kevin T.; Palopoli, Nicolás; Pérez Bercoff, Åsa; Shields, Denis C.; et al.; SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks; F1000 Research Ltd; F1000Research; 4; 477; 8-2015; 1-11 2046-1402 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/113226 |
identifier_str_mv |
Olorin, Emily; O'Brien, Kevin T.; Palopoli, Nicolás; Pérez Bercoff, Åsa; Shields, Denis C.; et al.; SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks; F1000 Research Ltd; F1000Research; 4; 477; 8-2015; 1-11 2046-1402 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.12688/f1000research.6773.1 info:eu-repo/semantics/altIdentifier/url/https://f1000research.com/articles/4-477 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
F1000 Research Ltd |
publisher.none.fl_str_mv |
F1000 Research Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613489818075136 |
score |
13.070432 |