Structure of Zn x Fe3− x O4 nanoparticles studied by neutron diffraction and its relation with their response in magnetic hyperthermia experiments

Autores
Lohr, Javier Hernán; Tobia, Dina; Torres, T. E.; Rodríguez, L.; Puente Orench, I.; Cuello, G. J.; Aguirre, M. H.; Campo, J.; Aurelio, Gabriela; Lima, Enio Junior
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The mixed zinc-ferrite spinel magnetic nanoparticles (MNPs) with the general formula ZnxFe3−xO4 are among the most extensively studied families of Fe oxides due to their interesting and diverse chemical, electronic, and magnetic properties. These systems offer the possibility of surface functionalization and possess high biocompatibility, making them highly attractive for applications in biomedicine, such as magnetic fluid hyperthermia (MFH). The efficiency of the MFH process relies on the magnetic, structural and morphological properties of the MNPs. The substitution with the Zn ion and the cationic distribution, as well as the synthesis process employed, have a direct impact on the final properties of these oxides. Therefore, it is essential to have tools that enable a comprehensive characterization of the system to assess its performance in MFH. In this study, we have synthesized four ZnxFe3−xO4 MNP systems using three different methods: two by thermal decomposition at high temperatures, one by co-precipitation, and another by co-precipitation followed by ball milling. We analyze the effect of these various synthesis processes on the magnetic and crystallographic properties, aiming to correlate them with the response of each system in MFH. Neutron diffraction data are employed to determine the cation site occupation and to investigate the correlation with the synthesis method. MFH measurements were conducted in media of diverse viscosities, revealing different values of specific loss power, thus demonstrating a clear dependence on the synthesis process and Zn content.
Fil: Lohr, Javier Hernán. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Tobia, Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Torres, T. E.. Universidad de Zaragoza; España
Fil: Rodríguez, L.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Puente Orench, I.. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; España
Fil: Cuello, G. J.. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; España
Fil: Aguirre, M. H.. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; España
Fil: Campo, J.. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; España
Fil: Aurelio, Gabriela. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Lima, Enio Junior. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Materia
Zn ferrita
Hyperthermia
Magnetism
Neutron diffraction
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/242335

id CONICETDig_60ccbd777c9353a3fcb4b965ca4acbd9
oai_identifier_str oai:ri.conicet.gov.ar:11336/242335
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Structure of Zn x Fe3− x O4 nanoparticles studied by neutron diffraction and its relation with their response in magnetic hyperthermia experimentsLohr, Javier HernánTobia, DinaTorres, T. E.Rodríguez, L.Puente Orench, I.Cuello, G. J.Aguirre, M. H.Campo, J.Aurelio, GabrielaLima, Enio JuniorZn ferritaHyperthermiaMagnetismNeutron diffractionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The mixed zinc-ferrite spinel magnetic nanoparticles (MNPs) with the general formula ZnxFe3−xO4 are among the most extensively studied families of Fe oxides due to their interesting and diverse chemical, electronic, and magnetic properties. These systems offer the possibility of surface functionalization and possess high biocompatibility, making them highly attractive for applications in biomedicine, such as magnetic fluid hyperthermia (MFH). The efficiency of the MFH process relies on the magnetic, structural and morphological properties of the MNPs. The substitution with the Zn ion and the cationic distribution, as well as the synthesis process employed, have a direct impact on the final properties of these oxides. Therefore, it is essential to have tools that enable a comprehensive characterization of the system to assess its performance in MFH. In this study, we have synthesized four ZnxFe3−xO4 MNP systems using three different methods: two by thermal decomposition at high temperatures, one by co-precipitation, and another by co-precipitation followed by ball milling. We analyze the effect of these various synthesis processes on the magnetic and crystallographic properties, aiming to correlate them with the response of each system in MFH. Neutron diffraction data are employed to determine the cation site occupation and to investigate the correlation with the synthesis method. MFH measurements were conducted in media of diverse viscosities, revealing different values of specific loss power, thus demonstrating a clear dependence on the synthesis process and Zn content.Fil: Lohr, Javier Hernán. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Tobia, Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Torres, T. E.. Universidad de Zaragoza; EspañaFil: Rodríguez, L.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Puente Orench, I.. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; EspañaFil: Cuello, G. J.. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; EspañaFil: Aguirre, M. H.. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; EspañaFil: Campo, J.. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; EspañaFil: Aurelio, Gabriela. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Lima, Enio Junior. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaAmerican Institute of Physics2024-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242335Lohr, Javier Hernán; Tobia, Dina; Torres, T. E.; Rodríguez, L.; Puente Orench, I.; et al.; Structure of Zn x Fe3− x O4 nanoparticles studied by neutron diffraction and its relation with their response in magnetic hyperthermia experiments; American Institute of Physics; Journal of Applied Physics; 136; 4; 7-2024; 1-120021-8979CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/jap/article/136/4/043905/3304258/Structure-of-ZnxFe3-xO4-nanoparticles-studied-byinfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0214250info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:36Zoai:ri.conicet.gov.ar:11336/242335instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:36.741CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Structure of Zn x Fe3− x O4 nanoparticles studied by neutron diffraction and its relation with their response in magnetic hyperthermia experiments
title Structure of Zn x Fe3− x O4 nanoparticles studied by neutron diffraction and its relation with their response in magnetic hyperthermia experiments
spellingShingle Structure of Zn x Fe3− x O4 nanoparticles studied by neutron diffraction and its relation with their response in magnetic hyperthermia experiments
Lohr, Javier Hernán
Zn ferrita
Hyperthermia
Magnetism
Neutron diffraction
title_short Structure of Zn x Fe3− x O4 nanoparticles studied by neutron diffraction and its relation with their response in magnetic hyperthermia experiments
title_full Structure of Zn x Fe3− x O4 nanoparticles studied by neutron diffraction and its relation with their response in magnetic hyperthermia experiments
title_fullStr Structure of Zn x Fe3− x O4 nanoparticles studied by neutron diffraction and its relation with their response in magnetic hyperthermia experiments
title_full_unstemmed Structure of Zn x Fe3− x O4 nanoparticles studied by neutron diffraction and its relation with their response in magnetic hyperthermia experiments
title_sort Structure of Zn x Fe3− x O4 nanoparticles studied by neutron diffraction and its relation with their response in magnetic hyperthermia experiments
dc.creator.none.fl_str_mv Lohr, Javier Hernán
Tobia, Dina
Torres, T. E.
Rodríguez, L.
Puente Orench, I.
Cuello, G. J.
Aguirre, M. H.
Campo, J.
Aurelio, Gabriela
Lima, Enio Junior
author Lohr, Javier Hernán
author_facet Lohr, Javier Hernán
Tobia, Dina
Torres, T. E.
Rodríguez, L.
Puente Orench, I.
Cuello, G. J.
Aguirre, M. H.
Campo, J.
Aurelio, Gabriela
Lima, Enio Junior
author_role author
author2 Tobia, Dina
Torres, T. E.
Rodríguez, L.
Puente Orench, I.
Cuello, G. J.
Aguirre, M. H.
Campo, J.
Aurelio, Gabriela
Lima, Enio Junior
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Zn ferrita
Hyperthermia
Magnetism
Neutron diffraction
topic Zn ferrita
Hyperthermia
Magnetism
Neutron diffraction
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The mixed zinc-ferrite spinel magnetic nanoparticles (MNPs) with the general formula ZnxFe3−xO4 are among the most extensively studied families of Fe oxides due to their interesting and diverse chemical, electronic, and magnetic properties. These systems offer the possibility of surface functionalization and possess high biocompatibility, making them highly attractive for applications in biomedicine, such as magnetic fluid hyperthermia (MFH). The efficiency of the MFH process relies on the magnetic, structural and morphological properties of the MNPs. The substitution with the Zn ion and the cationic distribution, as well as the synthesis process employed, have a direct impact on the final properties of these oxides. Therefore, it is essential to have tools that enable a comprehensive characterization of the system to assess its performance in MFH. In this study, we have synthesized four ZnxFe3−xO4 MNP systems using three different methods: two by thermal decomposition at high temperatures, one by co-precipitation, and another by co-precipitation followed by ball milling. We analyze the effect of these various synthesis processes on the magnetic and crystallographic properties, aiming to correlate them with the response of each system in MFH. Neutron diffraction data are employed to determine the cation site occupation and to investigate the correlation with the synthesis method. MFH measurements were conducted in media of diverse viscosities, revealing different values of specific loss power, thus demonstrating a clear dependence on the synthesis process and Zn content.
Fil: Lohr, Javier Hernán. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Tobia, Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Torres, T. E.. Universidad de Zaragoza; España
Fil: Rodríguez, L.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Puente Orench, I.. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; España
Fil: Cuello, G. J.. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; España
Fil: Aguirre, M. H.. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; España
Fil: Campo, J.. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; España
Fil: Aurelio, Gabriela. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Lima, Enio Junior. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
description The mixed zinc-ferrite spinel magnetic nanoparticles (MNPs) with the general formula ZnxFe3−xO4 are among the most extensively studied families of Fe oxides due to their interesting and diverse chemical, electronic, and magnetic properties. These systems offer the possibility of surface functionalization and possess high biocompatibility, making them highly attractive for applications in biomedicine, such as magnetic fluid hyperthermia (MFH). The efficiency of the MFH process relies on the magnetic, structural and morphological properties of the MNPs. The substitution with the Zn ion and the cationic distribution, as well as the synthesis process employed, have a direct impact on the final properties of these oxides. Therefore, it is essential to have tools that enable a comprehensive characterization of the system to assess its performance in MFH. In this study, we have synthesized four ZnxFe3−xO4 MNP systems using three different methods: two by thermal decomposition at high temperatures, one by co-precipitation, and another by co-precipitation followed by ball milling. We analyze the effect of these various synthesis processes on the magnetic and crystallographic properties, aiming to correlate them with the response of each system in MFH. Neutron diffraction data are employed to determine the cation site occupation and to investigate the correlation with the synthesis method. MFH measurements were conducted in media of diverse viscosities, revealing different values of specific loss power, thus demonstrating a clear dependence on the synthesis process and Zn content.
publishDate 2024
dc.date.none.fl_str_mv 2024-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/242335
Lohr, Javier Hernán; Tobia, Dina; Torres, T. E.; Rodríguez, L.; Puente Orench, I.; et al.; Structure of Zn x Fe3− x O4 nanoparticles studied by neutron diffraction and its relation with their response in magnetic hyperthermia experiments; American Institute of Physics; Journal of Applied Physics; 136; 4; 7-2024; 1-12
0021-8979
CONICET Digital
CONICET
url http://hdl.handle.net/11336/242335
identifier_str_mv Lohr, Javier Hernán; Tobia, Dina; Torres, T. E.; Rodríguez, L.; Puente Orench, I.; et al.; Structure of Zn x Fe3− x O4 nanoparticles studied by neutron diffraction and its relation with their response in magnetic hyperthermia experiments; American Institute of Physics; Journal of Applied Physics; 136; 4; 7-2024; 1-12
0021-8979
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/jap/article/136/4/043905/3304258/Structure-of-ZnxFe3-xO4-nanoparticles-studied-by
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0214250
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268612934500352
score 13.13397