Analysis of yield response variability to nitrogen fertilization in experiments performed in the Argentine Pampas
- Autores
- Alvarez, Roberto
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nitrogen (N) fertilization has become a common practice in corn and wheat crops in the Argentine Pampas during the past decade. In this region, great environmental variability determines erratic responses to fertilization. The quantity of data necessary for defining yield response models to N has not been investigated, and the relative yield transformation, combined with the total nutrient approach, has been widespread when analyzing fertilizer response results. The objectives were to determine the minimum data set necessary for fitting average yield functions suitable for fertilizer recommendation at regional scale and to investigate the consequences of using relative yield on N response functions when the total nutrient approach is used. Published results from two extensive fertilization networks, one with corn and the other with wheat, were used. Data were aggregated at different levels, because one single experiment to the entire network results, and yield response functions to N were fitted. Yield models tended to stability when a set of around 100 or more data points, generated in experiments performed across different sites and years, were used for fitting models with both crops. This amount of data was generated by performing 20 experiments in the corn network and 35 in the wheat network. Relative yield transformation allowed us to obtain models with lower dispersion than yield, but in the case of corn a biased model was generated that leads to underestimating fertilizer requirements. In wheat, similar fertilizer recommendations were produced from yield or relative yield functions. Response variability to fertilization must be addressed in the experimental area by increasing the amount of data used, rather than by applying the relative yield transformation.
Fil: Alvarez, Roberto. Universidad de Buenos Aires. Facultad de Agronomia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; Argentina - Materia
-
Fertilization
Nitrogen - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16573
Ver los metadatos del registro completo
id |
CONICETDig_6022dd2d712fe10cb65fac7d766934a5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16573 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Analysis of yield response variability to nitrogen fertilization in experiments performed in the Argentine PampasAlvarez, RobertoFertilizationNitrogenhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Nitrogen (N) fertilization has become a common practice in corn and wheat crops in the Argentine Pampas during the past decade. In this region, great environmental variability determines erratic responses to fertilization. The quantity of data necessary for defining yield response models to N has not been investigated, and the relative yield transformation, combined with the total nutrient approach, has been widespread when analyzing fertilizer response results. The objectives were to determine the minimum data set necessary for fitting average yield functions suitable for fertilizer recommendation at regional scale and to investigate the consequences of using relative yield on N response functions when the total nutrient approach is used. Published results from two extensive fertilization networks, one with corn and the other with wheat, were used. Data were aggregated at different levels, because one single experiment to the entire network results, and yield response functions to N were fitted. Yield models tended to stability when a set of around 100 or more data points, generated in experiments performed across different sites and years, were used for fitting models with both crops. This amount of data was generated by performing 20 experiments in the corn network and 35 in the wheat network. Relative yield transformation allowed us to obtain models with lower dispersion than yield, but in the case of corn a biased model was generated that leads to underestimating fertilizer requirements. In wheat, similar fertilizer recommendations were produced from yield or relative yield functions. Response variability to fertilization must be addressed in the experimental area by increasing the amount of data used, rather than by applying the relative yield transformation.Fil: Alvarez, Roberto. Universidad de Buenos Aires. Facultad de Agronomia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; ArgentinaTaylor & Francis2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16573Alvarez, Roberto; Analysis of yield response variability to nitrogen fertilization in experiments performed in the Argentine Pampas; Taylor & Francis; Communications In Soil Science And Plant Analysis; 39; 7-8; 12-2008; 1235-12440010-3624enginfo:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/00103620801925943info:eu-repo/semantics/altIdentifier/doi/10.1080/00103620801925943info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:42Zoai:ri.conicet.gov.ar:11336/16573instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:42.713CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Analysis of yield response variability to nitrogen fertilization in experiments performed in the Argentine Pampas |
title |
Analysis of yield response variability to nitrogen fertilization in experiments performed in the Argentine Pampas |
spellingShingle |
Analysis of yield response variability to nitrogen fertilization in experiments performed in the Argentine Pampas Alvarez, Roberto Fertilization Nitrogen |
title_short |
Analysis of yield response variability to nitrogen fertilization in experiments performed in the Argentine Pampas |
title_full |
Analysis of yield response variability to nitrogen fertilization in experiments performed in the Argentine Pampas |
title_fullStr |
Analysis of yield response variability to nitrogen fertilization in experiments performed in the Argentine Pampas |
title_full_unstemmed |
Analysis of yield response variability to nitrogen fertilization in experiments performed in the Argentine Pampas |
title_sort |
Analysis of yield response variability to nitrogen fertilization in experiments performed in the Argentine Pampas |
dc.creator.none.fl_str_mv |
Alvarez, Roberto |
author |
Alvarez, Roberto |
author_facet |
Alvarez, Roberto |
author_role |
author |
dc.subject.none.fl_str_mv |
Fertilization Nitrogen |
topic |
Fertilization Nitrogen |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Nitrogen (N) fertilization has become a common practice in corn and wheat crops in the Argentine Pampas during the past decade. In this region, great environmental variability determines erratic responses to fertilization. The quantity of data necessary for defining yield response models to N has not been investigated, and the relative yield transformation, combined with the total nutrient approach, has been widespread when analyzing fertilizer response results. The objectives were to determine the minimum data set necessary for fitting average yield functions suitable for fertilizer recommendation at regional scale and to investigate the consequences of using relative yield on N response functions when the total nutrient approach is used. Published results from two extensive fertilization networks, one with corn and the other with wheat, were used. Data were aggregated at different levels, because one single experiment to the entire network results, and yield response functions to N were fitted. Yield models tended to stability when a set of around 100 or more data points, generated in experiments performed across different sites and years, were used for fitting models with both crops. This amount of data was generated by performing 20 experiments in the corn network and 35 in the wheat network. Relative yield transformation allowed us to obtain models with lower dispersion than yield, but in the case of corn a biased model was generated that leads to underestimating fertilizer requirements. In wheat, similar fertilizer recommendations were produced from yield or relative yield functions. Response variability to fertilization must be addressed in the experimental area by increasing the amount of data used, rather than by applying the relative yield transformation. Fil: Alvarez, Roberto. Universidad de Buenos Aires. Facultad de Agronomia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; Argentina |
description |
Nitrogen (N) fertilization has become a common practice in corn and wheat crops in the Argentine Pampas during the past decade. In this region, great environmental variability determines erratic responses to fertilization. The quantity of data necessary for defining yield response models to N has not been investigated, and the relative yield transformation, combined with the total nutrient approach, has been widespread when analyzing fertilizer response results. The objectives were to determine the minimum data set necessary for fitting average yield functions suitable for fertilizer recommendation at regional scale and to investigate the consequences of using relative yield on N response functions when the total nutrient approach is used. Published results from two extensive fertilization networks, one with corn and the other with wheat, were used. Data were aggregated at different levels, because one single experiment to the entire network results, and yield response functions to N were fitted. Yield models tended to stability when a set of around 100 or more data points, generated in experiments performed across different sites and years, were used for fitting models with both crops. This amount of data was generated by performing 20 experiments in the corn network and 35 in the wheat network. Relative yield transformation allowed us to obtain models with lower dispersion than yield, but in the case of corn a biased model was generated that leads to underestimating fertilizer requirements. In wheat, similar fertilizer recommendations were produced from yield or relative yield functions. Response variability to fertilization must be addressed in the experimental area by increasing the amount of data used, rather than by applying the relative yield transformation. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16573 Alvarez, Roberto; Analysis of yield response variability to nitrogen fertilization in experiments performed in the Argentine Pampas; Taylor & Francis; Communications In Soil Science And Plant Analysis; 39; 7-8; 12-2008; 1235-1244 0010-3624 |
url |
http://hdl.handle.net/11336/16573 |
identifier_str_mv |
Alvarez, Roberto; Analysis of yield response variability to nitrogen fertilization in experiments performed in the Argentine Pampas; Taylor & Francis; Communications In Soil Science And Plant Analysis; 39; 7-8; 12-2008; 1235-1244 0010-3624 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/00103620801925943 info:eu-repo/semantics/altIdentifier/doi/10.1080/00103620801925943 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613747596853248 |
score |
13.070432 |