Coupled mechanical and fluid flow analysis in fractured saturated porous media using the extended finite element method
- Autores
- Luege, Mariela; Lucero, Javier Bernardo; Torrijos, Maria Celeste; Orlando, Antonio
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we study the fluid flow in a deformable porous linear elastic media with a single crack Γ. Fluid exchange between the crack and the surrounding porous media is taken into account through the definition of appropriate boundary conditions on Γ obtained by applying an averaging process of the Darcy flow within the crack. Two models are considered and compared: a semianalytical one which solves the general potential solution of the singular integral equation modelling the steady state flow in an infinite porous media with one linear crack, obtained by applying the complex potential method, and a numerical one based on the Extended Finite Element Method (XFEM) of the governing equations. The XFEM we apply employs the standard enriched basis functions represented by the Heaviside function on Γ to describe the discontinuity jump of the displacement field across the crack, the distance function to Γ to describe the non differentiability of the pressure field across Γ and the singular functions describing the View the MathML source-singularity at the crack tip of the stress and pressure field, where r is the distance to the crack tip. The semianalytical model is used to verify the application of the XFEM. We include then the coupling with the mechanical response of the body, which is analyzed by using only the XFEM. Several numerical experiments are then carried out which illustrate the variation of the hydro-mechanical quantities around the crack and within the crack.
Fil: Luege, Mariela. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras ; Argentina. Instituto Nacional de Tecnologia Agropecuaria. Centro Reg.tucuman-santiago del Estero; Argentina
Fil: Lucero, Javier Bernardo. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina
Fil: Torrijos, Maria Celeste. Universidad Nacional de la Plata. Laboratorio de Investigación y Desarrollo de Métodos Analíticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Orlando, Antonio. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina - Materia
-
Fractured Porous Media
Steady State Flow
Biot-Coussy Model
X-Fem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/7246
Ver los metadatos del registro completo
id |
CONICETDig_6007051fc99f2c38384211e8cf6d2a28 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/7246 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Coupled mechanical and fluid flow analysis in fractured saturated porous media using the extended finite element methodLuege, MarielaLucero, Javier BernardoTorrijos, Maria CelesteOrlando, AntonioFractured Porous MediaSteady State FlowBiot-Coussy ModelX-Femhttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2In this paper, we study the fluid flow in a deformable porous linear elastic media with a single crack Γ. Fluid exchange between the crack and the surrounding porous media is taken into account through the definition of appropriate boundary conditions on Γ obtained by applying an averaging process of the Darcy flow within the crack. Two models are considered and compared: a semianalytical one which solves the general potential solution of the singular integral equation modelling the steady state flow in an infinite porous media with one linear crack, obtained by applying the complex potential method, and a numerical one based on the Extended Finite Element Method (XFEM) of the governing equations. The XFEM we apply employs the standard enriched basis functions represented by the Heaviside function on Γ to describe the discontinuity jump of the displacement field across the crack, the distance function to Γ to describe the non differentiability of the pressure field across Γ and the singular functions describing the View the MathML source-singularity at the crack tip of the stress and pressure field, where r is the distance to the crack tip. The semianalytical model is used to verify the application of the XFEM. We include then the coupling with the mechanical response of the body, which is analyzed by using only the XFEM. Several numerical experiments are then carried out which illustrate the variation of the hydro-mechanical quantities around the crack and within the crack.Fil: Luege, Mariela. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras ; Argentina. Instituto Nacional de Tecnologia Agropecuaria. Centro Reg.tucuman-santiago del Estero; ArgentinaFil: Lucero, Javier Bernardo. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; ArgentinaFil: Torrijos, Maria Celeste. Universidad Nacional de la Plata. Laboratorio de Investigación y Desarrollo de Métodos Analíticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Orlando, Antonio. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; ArgentinaElsevier2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7246Luege, Mariela; Lucero, Javier Bernardo; Torrijos, Maria Celeste; Orlando, Antonio; Coupled mechanical and fluid flow analysis in fractured saturated porous media using the extended finite element method; Elsevier; Applied Mathematical Modelling; 40; 7-8; 11-2014; 4480-45040307-904Xenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0307904X15007477info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apm.2015.11.032info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:14Zoai:ri.conicet.gov.ar:11336/7246instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:14.778CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Coupled mechanical and fluid flow analysis in fractured saturated porous media using the extended finite element method |
title |
Coupled mechanical and fluid flow analysis in fractured saturated porous media using the extended finite element method |
spellingShingle |
Coupled mechanical and fluid flow analysis in fractured saturated porous media using the extended finite element method Luege, Mariela Fractured Porous Media Steady State Flow Biot-Coussy Model X-Fem |
title_short |
Coupled mechanical and fluid flow analysis in fractured saturated porous media using the extended finite element method |
title_full |
Coupled mechanical and fluid flow analysis in fractured saturated porous media using the extended finite element method |
title_fullStr |
Coupled mechanical and fluid flow analysis in fractured saturated porous media using the extended finite element method |
title_full_unstemmed |
Coupled mechanical and fluid flow analysis in fractured saturated porous media using the extended finite element method |
title_sort |
Coupled mechanical and fluid flow analysis in fractured saturated porous media using the extended finite element method |
dc.creator.none.fl_str_mv |
Luege, Mariela Lucero, Javier Bernardo Torrijos, Maria Celeste Orlando, Antonio |
author |
Luege, Mariela |
author_facet |
Luege, Mariela Lucero, Javier Bernardo Torrijos, Maria Celeste Orlando, Antonio |
author_role |
author |
author2 |
Lucero, Javier Bernardo Torrijos, Maria Celeste Orlando, Antonio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Fractured Porous Media Steady State Flow Biot-Coussy Model X-Fem |
topic |
Fractured Porous Media Steady State Flow Biot-Coussy Model X-Fem |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.1 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this paper, we study the fluid flow in a deformable porous linear elastic media with a single crack Γ. Fluid exchange between the crack and the surrounding porous media is taken into account through the definition of appropriate boundary conditions on Γ obtained by applying an averaging process of the Darcy flow within the crack. Two models are considered and compared: a semianalytical one which solves the general potential solution of the singular integral equation modelling the steady state flow in an infinite porous media with one linear crack, obtained by applying the complex potential method, and a numerical one based on the Extended Finite Element Method (XFEM) of the governing equations. The XFEM we apply employs the standard enriched basis functions represented by the Heaviside function on Γ to describe the discontinuity jump of the displacement field across the crack, the distance function to Γ to describe the non differentiability of the pressure field across Γ and the singular functions describing the View the MathML source-singularity at the crack tip of the stress and pressure field, where r is the distance to the crack tip. The semianalytical model is used to verify the application of the XFEM. We include then the coupling with the mechanical response of the body, which is analyzed by using only the XFEM. Several numerical experiments are then carried out which illustrate the variation of the hydro-mechanical quantities around the crack and within the crack. Fil: Luege, Mariela. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras ; Argentina. Instituto Nacional de Tecnologia Agropecuaria. Centro Reg.tucuman-santiago del Estero; Argentina Fil: Lucero, Javier Bernardo. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina Fil: Torrijos, Maria Celeste. Universidad Nacional de la Plata. Laboratorio de Investigación y Desarrollo de Métodos Analíticos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Orlando, Antonio. Universidad Nacional de Tucuman. Facultad de Ciencias Exactas y Tecnologia. Instituto de Estructuras ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina |
description |
In this paper, we study the fluid flow in a deformable porous linear elastic media with a single crack Γ. Fluid exchange between the crack and the surrounding porous media is taken into account through the definition of appropriate boundary conditions on Γ obtained by applying an averaging process of the Darcy flow within the crack. Two models are considered and compared: a semianalytical one which solves the general potential solution of the singular integral equation modelling the steady state flow in an infinite porous media with one linear crack, obtained by applying the complex potential method, and a numerical one based on the Extended Finite Element Method (XFEM) of the governing equations. The XFEM we apply employs the standard enriched basis functions represented by the Heaviside function on Γ to describe the discontinuity jump of the displacement field across the crack, the distance function to Γ to describe the non differentiability of the pressure field across Γ and the singular functions describing the View the MathML source-singularity at the crack tip of the stress and pressure field, where r is the distance to the crack tip. The semianalytical model is used to verify the application of the XFEM. We include then the coupling with the mechanical response of the body, which is analyzed by using only the XFEM. Several numerical experiments are then carried out which illustrate the variation of the hydro-mechanical quantities around the crack and within the crack. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/7246 Luege, Mariela; Lucero, Javier Bernardo; Torrijos, Maria Celeste; Orlando, Antonio; Coupled mechanical and fluid flow analysis in fractured saturated porous media using the extended finite element method; Elsevier; Applied Mathematical Modelling; 40; 7-8; 11-2014; 4480-4504 0307-904X |
url |
http://hdl.handle.net/11336/7246 |
identifier_str_mv |
Luege, Mariela; Lucero, Javier Bernardo; Torrijos, Maria Celeste; Orlando, Antonio; Coupled mechanical and fluid flow analysis in fractured saturated porous media using the extended finite element method; Elsevier; Applied Mathematical Modelling; 40; 7-8; 11-2014; 4480-4504 0307-904X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0307904X15007477 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apm.2015.11.032 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613360964861952 |
score |
13.070432 |