Modeling the Contribution of Genetic Variation to Cognitive Gains Following Training with a Machine Learning Approach
- Autores
- Musso, Mariel Fernanda; Cómbita, Lina M.; Cascallar, Eduardo C.; Rueda, M. Rosario
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Previous studies have demonstrated the psychological impact of stressful events related to an infectious disease outbreak. This impact may be moderated by the perception of risk and individual differences in personality. The aim of this study was to analyze the effects of the personality profiles and mental health on the perceived risk (being infected, getting hospitalized, and dying from COVID-19) and on preventive behaviors (wash your hands, stay at home, maintain social distance, touch your face, and mask use). A total sample of 126 Argentine adults, both genders, participated and filled in the Revised NEO Personality Inventory (NEO PI-R), the Symptom Checklist-90 (SCL-90) scale, a sociodemographic questionnaire, and COVID-19 estimates regarding risk perception and preventive behaviors. Results show that people with undercontrolled personality profile and high interpersonal sensitivity overestimated their probability of getting infected, hospitalization, and dying from COVID-19. In addition, the resilient profile group with high anxiety overestimated the probability of hospitalization and dying; the undercontrolled profile group with high anxiety, phobic anxiety, or psychoticism, also overestimated their probability of dying; the undercontrolled profile people with high interpersonal sensitivity, or high anxiety reported higher probabilities of maintaining social distance. Anxiety and depression symptoms explain a low percentage of the perceived risk variance; while conscientiousness, together with mental health were able to explain the estimated probability of engaging in protective behaviors. These findings could be useful to implement more effective and realistic strategies to promote the adoption of preventive behaviors.
Fil: Musso, Mariel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Centro Interdisciplinario de Investigaciones en Psicología Matemática y Experimental Dr. Horacio J. A. Rimoldi; Argentina. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento; España. Universidad Argentina de la Empresa; Argentina
Fil: Cómbita, Lina M.. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España
Fil: Cascallar, Eduardo C.. Katholikie Universiteit Leuven; Bélgica
Fil: Rueda, M. Rosario. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España - Materia
-
COGNITIVE GAINS
MACHINE LEARNING
GENETIC VARIATION
PREDICTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/232216
Ver los metadatos del registro completo
id |
CONICETDig_5fda2d14e83862a89abdb9c13bf72973 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/232216 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modeling the Contribution of Genetic Variation to Cognitive Gains Following Training with a Machine Learning ApproachMusso, Mariel FernandaCómbita, Lina M.Cascallar, Eduardo C.Rueda, M. RosarioCOGNITIVE GAINSMACHINE LEARNINGGENETIC VARIATIONPREDICTIONhttps://purl.org/becyt/ford/5.1https://purl.org/becyt/ford/5Previous studies have demonstrated the psychological impact of stressful events related to an infectious disease outbreak. This impact may be moderated by the perception of risk and individual differences in personality. The aim of this study was to analyze the effects of the personality profiles and mental health on the perceived risk (being infected, getting hospitalized, and dying from COVID-19) and on preventive behaviors (wash your hands, stay at home, maintain social distance, touch your face, and mask use). A total sample of 126 Argentine adults, both genders, participated and filled in the Revised NEO Personality Inventory (NEO PI-R), the Symptom Checklist-90 (SCL-90) scale, a sociodemographic questionnaire, and COVID-19 estimates regarding risk perception and preventive behaviors. Results show that people with undercontrolled personality profile and high interpersonal sensitivity overestimated their probability of getting infected, hospitalization, and dying from COVID-19. In addition, the resilient profile group with high anxiety overestimated the probability of hospitalization and dying; the undercontrolled profile group with high anxiety, phobic anxiety, or psychoticism, also overestimated their probability of dying; the undercontrolled profile people with high interpersonal sensitivity, or high anxiety reported higher probabilities of maintaining social distance. Anxiety and depression symptoms explain a low percentage of the perceived risk variance; while conscientiousness, together with mental health were able to explain the estimated probability of engaging in protective behaviors. These findings could be useful to implement more effective and realistic strategies to promote the adoption of preventive behaviors.Fil: Musso, Mariel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Centro Interdisciplinario de Investigaciones en Psicología Matemática y Experimental Dr. Horacio J. A. Rimoldi; Argentina. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento; España. Universidad Argentina de la Empresa; ArgentinaFil: Cómbita, Lina M.. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; EspañaFil: Cascallar, Eduardo C.. Katholikie Universiteit Leuven; BélgicaFil: Rueda, M. Rosario. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; EspañaJohn Wiley & Sons2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/232216Musso, Mariel Fernanda; Cómbita, Lina M.; Cascallar, Eduardo C.; Rueda, M. Rosario; Modeling the Contribution of Genetic Variation to Cognitive Gains Following Training with a Machine Learning Approach; John Wiley & Sons; Mind, Brain, and Education; 16; 4; 3-2022; 300-3171751-228XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/mbe.12336info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/mbe.12336info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:36Zoai:ri.conicet.gov.ar:11336/232216instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:36.448CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modeling the Contribution of Genetic Variation to Cognitive Gains Following Training with a Machine Learning Approach |
title |
Modeling the Contribution of Genetic Variation to Cognitive Gains Following Training with a Machine Learning Approach |
spellingShingle |
Modeling the Contribution of Genetic Variation to Cognitive Gains Following Training with a Machine Learning Approach Musso, Mariel Fernanda COGNITIVE GAINS MACHINE LEARNING GENETIC VARIATION PREDICTION |
title_short |
Modeling the Contribution of Genetic Variation to Cognitive Gains Following Training with a Machine Learning Approach |
title_full |
Modeling the Contribution of Genetic Variation to Cognitive Gains Following Training with a Machine Learning Approach |
title_fullStr |
Modeling the Contribution of Genetic Variation to Cognitive Gains Following Training with a Machine Learning Approach |
title_full_unstemmed |
Modeling the Contribution of Genetic Variation to Cognitive Gains Following Training with a Machine Learning Approach |
title_sort |
Modeling the Contribution of Genetic Variation to Cognitive Gains Following Training with a Machine Learning Approach |
dc.creator.none.fl_str_mv |
Musso, Mariel Fernanda Cómbita, Lina M. Cascallar, Eduardo C. Rueda, M. Rosario |
author |
Musso, Mariel Fernanda |
author_facet |
Musso, Mariel Fernanda Cómbita, Lina M. Cascallar, Eduardo C. Rueda, M. Rosario |
author_role |
author |
author2 |
Cómbita, Lina M. Cascallar, Eduardo C. Rueda, M. Rosario |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
COGNITIVE GAINS MACHINE LEARNING GENETIC VARIATION PREDICTION |
topic |
COGNITIVE GAINS MACHINE LEARNING GENETIC VARIATION PREDICTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.1 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
Previous studies have demonstrated the psychological impact of stressful events related to an infectious disease outbreak. This impact may be moderated by the perception of risk and individual differences in personality. The aim of this study was to analyze the effects of the personality profiles and mental health on the perceived risk (being infected, getting hospitalized, and dying from COVID-19) and on preventive behaviors (wash your hands, stay at home, maintain social distance, touch your face, and mask use). A total sample of 126 Argentine adults, both genders, participated and filled in the Revised NEO Personality Inventory (NEO PI-R), the Symptom Checklist-90 (SCL-90) scale, a sociodemographic questionnaire, and COVID-19 estimates regarding risk perception and preventive behaviors. Results show that people with undercontrolled personality profile and high interpersonal sensitivity overestimated their probability of getting infected, hospitalization, and dying from COVID-19. In addition, the resilient profile group with high anxiety overestimated the probability of hospitalization and dying; the undercontrolled profile group with high anxiety, phobic anxiety, or psychoticism, also overestimated their probability of dying; the undercontrolled profile people with high interpersonal sensitivity, or high anxiety reported higher probabilities of maintaining social distance. Anxiety and depression symptoms explain a low percentage of the perceived risk variance; while conscientiousness, together with mental health were able to explain the estimated probability of engaging in protective behaviors. These findings could be useful to implement more effective and realistic strategies to promote the adoption of preventive behaviors. Fil: Musso, Mariel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Centro Interdisciplinario de Investigaciones en Psicología Matemática y Experimental Dr. Horacio J. A. Rimoldi; Argentina. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento; España. Universidad Argentina de la Empresa; Argentina Fil: Cómbita, Lina M.. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España Fil: Cascallar, Eduardo C.. Katholikie Universiteit Leuven; Bélgica Fil: Rueda, M. Rosario. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España |
description |
Previous studies have demonstrated the psychological impact of stressful events related to an infectious disease outbreak. This impact may be moderated by the perception of risk and individual differences in personality. The aim of this study was to analyze the effects of the personality profiles and mental health on the perceived risk (being infected, getting hospitalized, and dying from COVID-19) and on preventive behaviors (wash your hands, stay at home, maintain social distance, touch your face, and mask use). A total sample of 126 Argentine adults, both genders, participated and filled in the Revised NEO Personality Inventory (NEO PI-R), the Symptom Checklist-90 (SCL-90) scale, a sociodemographic questionnaire, and COVID-19 estimates regarding risk perception and preventive behaviors. Results show that people with undercontrolled personality profile and high interpersonal sensitivity overestimated their probability of getting infected, hospitalization, and dying from COVID-19. In addition, the resilient profile group with high anxiety overestimated the probability of hospitalization and dying; the undercontrolled profile group with high anxiety, phobic anxiety, or psychoticism, also overestimated their probability of dying; the undercontrolled profile people with high interpersonal sensitivity, or high anxiety reported higher probabilities of maintaining social distance. Anxiety and depression symptoms explain a low percentage of the perceived risk variance; while conscientiousness, together with mental health were able to explain the estimated probability of engaging in protective behaviors. These findings could be useful to implement more effective and realistic strategies to promote the adoption of preventive behaviors. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/232216 Musso, Mariel Fernanda; Cómbita, Lina M.; Cascallar, Eduardo C.; Rueda, M. Rosario; Modeling the Contribution of Genetic Variation to Cognitive Gains Following Training with a Machine Learning Approach; John Wiley & Sons; Mind, Brain, and Education; 16; 4; 3-2022; 300-317 1751-228X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/232216 |
identifier_str_mv |
Musso, Mariel Fernanda; Cómbita, Lina M.; Cascallar, Eduardo C.; Rueda, M. Rosario; Modeling the Contribution of Genetic Variation to Cognitive Gains Following Training with a Machine Learning Approach; John Wiley & Sons; Mind, Brain, and Education; 16; 4; 3-2022; 300-317 1751-228X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/mbe.12336 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/mbe.12336 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons |
publisher.none.fl_str_mv |
John Wiley & Sons |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613585893851136 |
score |
13.070432 |