A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana

Autores
Bondino, Hernán Gabriel; Valle, Estela Marta
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Transcription initiation by RNA polymerase II is unidirectional from most genes. In plants, divergent genes, defined as non-overlapping genes organized head-to-head, are highly represented in the Arabidopsis genome. Nevertheless, there is scarce evidence on functionalanalyses of these intergenic regions. The At5g06290 and At5g06280 loci are head-to-head oriented and encode a chloroplast-located 2-Cys peroxiredoxin B (2CPB) and a protein of unknown function (PUF), respectively. The 2-Cys peroxiredoxins are proteins involved in redox processes, they are part of the plant antioxidant defence and also act as chaperons. In this study, the transcriptional activity of a small intergenic region (351 bp) shared by At5g06290 and At5g06280 in Arabidopsis thaliana was characterized.Activity of the intergenic region in both orientations was analyzed by driving the β-glucuronidase (GUS) reporter gene during the development and growth of Arabidopsis plantsunder physiological and stressful conditions. Results have shown that this region drives expression either of 2cpb or puf in photosynthetic or vascular tissues, respectively. GUS expression driven by the promoter in 2cpb orientation was enhanced by heat stress. On the other hand, the promoter in both orientations has shown similar down-regulation of GUS expression under low temperatures and other stress conditions such as mannitol, oxidative stress, or fungal elicitor.The results from this study account for the first evidence of an intergenic region that,in opposite orientation, directs GUS expression in different spatially-localized Arabidopsis tissues in a mutually exclusive manner. Additionally, this is the first demonstration of a small intergenic region that drives expression of a gene whose product is involved in the chloroplast antioxidant defence such as 2cpb. Furthermore, these results contribute to show that 2cpb is related to the heat stress defensive system in leaves and roots of Arabidopsis thaliana.
Fil: Bondino, Hernán Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Valle, Estela Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
Materia
Bidirectional promoter
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/118477

id CONICETDig_5fc734d5fb58eac39723c671d9c1cacb
oai_identifier_str oai:ri.conicet.gov.ar:11336/118477
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thalianaBondino, Hernán GabrielValle, Estela MartaBidirectional promoterhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Transcription initiation by RNA polymerase II is unidirectional from most genes. In plants, divergent genes, defined as non-overlapping genes organized head-to-head, are highly represented in the Arabidopsis genome. Nevertheless, there is scarce evidence on functionalanalyses of these intergenic regions. The At5g06290 and At5g06280 loci are head-to-head oriented and encode a chloroplast-located 2-Cys peroxiredoxin B (2CPB) and a protein of unknown function (PUF), respectively. The 2-Cys peroxiredoxins are proteins involved in redox processes, they are part of the plant antioxidant defence and also act as chaperons. In this study, the transcriptional activity of a small intergenic region (351 bp) shared by At5g06290 and At5g06280 in Arabidopsis thaliana was characterized.Activity of the intergenic region in both orientations was analyzed by driving the β-glucuronidase (GUS) reporter gene during the development and growth of Arabidopsis plantsunder physiological and stressful conditions. Results have shown that this region drives expression either of 2cpb or puf in photosynthetic or vascular tissues, respectively. GUS expression driven by the promoter in 2cpb orientation was enhanced by heat stress. On the other hand, the promoter in both orientations has shown similar down-regulation of GUS expression under low temperatures and other stress conditions such as mannitol, oxidative stress, or fungal elicitor.The results from this study account for the first evidence of an intergenic region that,in opposite orientation, directs GUS expression in different spatially-localized Arabidopsis tissues in a mutually exclusive manner. Additionally, this is the first demonstration of a small intergenic region that drives expression of a gene whose product is involved in the chloroplast antioxidant defence such as 2cpb. Furthermore, these results contribute to show that 2cpb is related to the heat stress defensive system in leaves and roots of Arabidopsis thaliana.Fil: Bondino, Hernán Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Valle, Estela Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaBioMed Central2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/118477Bondino, Hernán Gabriel; Valle, Estela Marta; A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana; BioMed Central; BMC Molecular Biology; 10; 12-2009; 95-1061471-2199CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.biomedcentral.com/1471-2199/10/95/info:eu-repo/semantics/altIdentifier/doi/10.1186/1471-2199-10-95info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:19Zoai:ri.conicet.gov.ar:11336/118477instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:19.949CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana
title A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana
spellingShingle A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana
Bondino, Hernán Gabriel
Bidirectional promoter
title_short A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana
title_full A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana
title_fullStr A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana
title_full_unstemmed A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana
title_sort A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana
dc.creator.none.fl_str_mv Bondino, Hernán Gabriel
Valle, Estela Marta
author Bondino, Hernán Gabriel
author_facet Bondino, Hernán Gabriel
Valle, Estela Marta
author_role author
author2 Valle, Estela Marta
author2_role author
dc.subject.none.fl_str_mv Bidirectional promoter
topic Bidirectional promoter
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Transcription initiation by RNA polymerase II is unidirectional from most genes. In plants, divergent genes, defined as non-overlapping genes organized head-to-head, are highly represented in the Arabidopsis genome. Nevertheless, there is scarce evidence on functionalanalyses of these intergenic regions. The At5g06290 and At5g06280 loci are head-to-head oriented and encode a chloroplast-located 2-Cys peroxiredoxin B (2CPB) and a protein of unknown function (PUF), respectively. The 2-Cys peroxiredoxins are proteins involved in redox processes, they are part of the plant antioxidant defence and also act as chaperons. In this study, the transcriptional activity of a small intergenic region (351 bp) shared by At5g06290 and At5g06280 in Arabidopsis thaliana was characterized.Activity of the intergenic region in both orientations was analyzed by driving the β-glucuronidase (GUS) reporter gene during the development and growth of Arabidopsis plantsunder physiological and stressful conditions. Results have shown that this region drives expression either of 2cpb or puf in photosynthetic or vascular tissues, respectively. GUS expression driven by the promoter in 2cpb orientation was enhanced by heat stress. On the other hand, the promoter in both orientations has shown similar down-regulation of GUS expression under low temperatures and other stress conditions such as mannitol, oxidative stress, or fungal elicitor.The results from this study account for the first evidence of an intergenic region that,in opposite orientation, directs GUS expression in different spatially-localized Arabidopsis tissues in a mutually exclusive manner. Additionally, this is the first demonstration of a small intergenic region that drives expression of a gene whose product is involved in the chloroplast antioxidant defence such as 2cpb. Furthermore, these results contribute to show that 2cpb is related to the heat stress defensive system in leaves and roots of Arabidopsis thaliana.
Fil: Bondino, Hernán Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
Fil: Valle, Estela Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
description Transcription initiation by RNA polymerase II is unidirectional from most genes. In plants, divergent genes, defined as non-overlapping genes organized head-to-head, are highly represented in the Arabidopsis genome. Nevertheless, there is scarce evidence on functionalanalyses of these intergenic regions. The At5g06290 and At5g06280 loci are head-to-head oriented and encode a chloroplast-located 2-Cys peroxiredoxin B (2CPB) and a protein of unknown function (PUF), respectively. The 2-Cys peroxiredoxins are proteins involved in redox processes, they are part of the plant antioxidant defence and also act as chaperons. In this study, the transcriptional activity of a small intergenic region (351 bp) shared by At5g06290 and At5g06280 in Arabidopsis thaliana was characterized.Activity of the intergenic region in both orientations was analyzed by driving the β-glucuronidase (GUS) reporter gene during the development and growth of Arabidopsis plantsunder physiological and stressful conditions. Results have shown that this region drives expression either of 2cpb or puf in photosynthetic or vascular tissues, respectively. GUS expression driven by the promoter in 2cpb orientation was enhanced by heat stress. On the other hand, the promoter in both orientations has shown similar down-regulation of GUS expression under low temperatures and other stress conditions such as mannitol, oxidative stress, or fungal elicitor.The results from this study account for the first evidence of an intergenic region that,in opposite orientation, directs GUS expression in different spatially-localized Arabidopsis tissues in a mutually exclusive manner. Additionally, this is the first demonstration of a small intergenic region that drives expression of a gene whose product is involved in the chloroplast antioxidant defence such as 2cpb. Furthermore, these results contribute to show that 2cpb is related to the heat stress defensive system in leaves and roots of Arabidopsis thaliana.
publishDate 2009
dc.date.none.fl_str_mv 2009-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/118477
Bondino, Hernán Gabriel; Valle, Estela Marta; A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana; BioMed Central; BMC Molecular Biology; 10; 12-2009; 95-106
1471-2199
CONICET Digital
CONICET
url http://hdl.handle.net/11336/118477
identifier_str_mv Bondino, Hernán Gabriel; Valle, Estela Marta; A small intergenic region drives exclusive tissue-specific expression of the adjacent genes in Arabidopsis thaliana; BioMed Central; BMC Molecular Biology; 10; 12-2009; 95-106
1471-2199
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.biomedcentral.com/1471-2199/10/95/
info:eu-repo/semantics/altIdentifier/doi/10.1186/1471-2199-10-95
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv BioMed Central
publisher.none.fl_str_mv BioMed Central
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613023113674752
score 13.070432