VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges

Autores
Heslop, Kareem A.; Milesi, Verónica; Maldonado, Eduardo N.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Most anionic metabolites including respiratory substrates, glycolytic adenosine triphosphate (ATP), and small cations that enter mitochondria, and mitochondrial ATP moving to the cytosol, cross the outer mitochondrial membrane (OMM) through voltage dependent anion channels (VDAC). The closed states of VDAC block the passage of anionic metabolites, and increase the flux of small cations, including calcium. Consequently, physiological or pharmacological regulation of VDAC opening, by conditioning the magnitude of both anion and cation fluxes, is a major contributor to mitochondrial metabolism. Tumor cells display a pro-proliferative Warburg phenotype characterized by enhanced aerobic glycolysis in the presence of partial suppression of mitochondrial metabolism. The heterogeneous and flexible metabolic traits of most human tumors render cells able to adapt to the constantly changing energetic and biosynthetic demands by switching between predominantly glycolytic or oxidative phenotypes. Here, we describe the biological consequences of changes in the conformational state of VDAC for cancer metabolism, the mechanisms by which VDAC-openers promote cancer cell death, and the advantages of VDAC opening as a valuable pharmacological target. Particular emphasis is given to the endogenous regulation of VDAC by free tubulin and the effects of VDAC-tubulin antagonists in cancer cells. Because of its function and location, VDAC operates as a switch to turn-off mitochondrial metabolism (closed state) and increase aerobic glycolysis (pro-Warburg), or to turn-on mitochondrial metabolism (open state) and decrease glycolysis (anti-Warburg). A better understanding of the role of VDAC regulation in tumor progression is relevant both for cancer biology and for developing novel cancer chemotherapies.
Fil: Heslop, Kareem A.. University of North Carolina; Estados Unidos
Fil: Milesi, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; Argentina
Fil: Maldonado, Eduardo N.. University of North Carolina; Estados Unidos
Materia
CANCER
GLYCOLYSIS
METABOLIC FLEXIBILITY
METABOLIC REPROGRAMMING
METABOLISM
MITOCHONDRIA
VOLTAGE DEPENDENT ANION CHANNELS
WARBURG
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/181061

id CONICETDig_5ea5fc755d1ecf897988db23d81537db
oai_identifier_str oai:ri.conicet.gov.ar:11336/181061
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling VDAC Modulation of Cancer Metabolism: Advances and Therapeutic ChallengesHeslop, Kareem A.Milesi, VerónicaMaldonado, Eduardo N.CANCERGLYCOLYSISMETABOLIC FLEXIBILITYMETABOLIC REPROGRAMMINGMETABOLISMMITOCHONDRIAVOLTAGE DEPENDENT ANION CHANNELSWARBURGhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Most anionic metabolites including respiratory substrates, glycolytic adenosine triphosphate (ATP), and small cations that enter mitochondria, and mitochondrial ATP moving to the cytosol, cross the outer mitochondrial membrane (OMM) through voltage dependent anion channels (VDAC). The closed states of VDAC block the passage of anionic metabolites, and increase the flux of small cations, including calcium. Consequently, physiological or pharmacological regulation of VDAC opening, by conditioning the magnitude of both anion and cation fluxes, is a major contributor to mitochondrial metabolism. Tumor cells display a pro-proliferative Warburg phenotype characterized by enhanced aerobic glycolysis in the presence of partial suppression of mitochondrial metabolism. The heterogeneous and flexible metabolic traits of most human tumors render cells able to adapt to the constantly changing energetic and biosynthetic demands by switching between predominantly glycolytic or oxidative phenotypes. Here, we describe the biological consequences of changes in the conformational state of VDAC for cancer metabolism, the mechanisms by which VDAC-openers promote cancer cell death, and the advantages of VDAC opening as a valuable pharmacological target. Particular emphasis is given to the endogenous regulation of VDAC by free tubulin and the effects of VDAC-tubulin antagonists in cancer cells. Because of its function and location, VDAC operates as a switch to turn-off mitochondrial metabolism (closed state) and increase aerobic glycolysis (pro-Warburg), or to turn-on mitochondrial metabolism (open state) and decrease glycolysis (anti-Warburg). A better understanding of the role of VDAC regulation in tumor progression is relevant both for cancer biology and for developing novel cancer chemotherapies.Fil: Heslop, Kareem A.. University of North Carolina; Estados UnidosFil: Milesi, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; ArgentinaFil: Maldonado, Eduardo N.. University of North Carolina; Estados UnidosFrontiers Media2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/181061Heslop, Kareem A.; Milesi, Verónica; Maldonado, Eduardo N.; VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges; Frontiers Media; Frontiers in Physiology; 12; 9-2021; 1-121664-042XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fphys.2021.742839/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fphys.2021.742839info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:58Zoai:ri.conicet.gov.ar:11336/181061instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:58.436CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges
title VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges
spellingShingle VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges
Heslop, Kareem A.
CANCER
GLYCOLYSIS
METABOLIC FLEXIBILITY
METABOLIC REPROGRAMMING
METABOLISM
MITOCHONDRIA
VOLTAGE DEPENDENT ANION CHANNELS
WARBURG
title_short VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges
title_full VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges
title_fullStr VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges
title_full_unstemmed VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges
title_sort VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges
dc.creator.none.fl_str_mv Heslop, Kareem A.
Milesi, Verónica
Maldonado, Eduardo N.
author Heslop, Kareem A.
author_facet Heslop, Kareem A.
Milesi, Verónica
Maldonado, Eduardo N.
author_role author
author2 Milesi, Verónica
Maldonado, Eduardo N.
author2_role author
author
dc.subject.none.fl_str_mv CANCER
GLYCOLYSIS
METABOLIC FLEXIBILITY
METABOLIC REPROGRAMMING
METABOLISM
MITOCHONDRIA
VOLTAGE DEPENDENT ANION CHANNELS
WARBURG
topic CANCER
GLYCOLYSIS
METABOLIC FLEXIBILITY
METABOLIC REPROGRAMMING
METABOLISM
MITOCHONDRIA
VOLTAGE DEPENDENT ANION CHANNELS
WARBURG
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Most anionic metabolites including respiratory substrates, glycolytic adenosine triphosphate (ATP), and small cations that enter mitochondria, and mitochondrial ATP moving to the cytosol, cross the outer mitochondrial membrane (OMM) through voltage dependent anion channels (VDAC). The closed states of VDAC block the passage of anionic metabolites, and increase the flux of small cations, including calcium. Consequently, physiological or pharmacological regulation of VDAC opening, by conditioning the magnitude of both anion and cation fluxes, is a major contributor to mitochondrial metabolism. Tumor cells display a pro-proliferative Warburg phenotype characterized by enhanced aerobic glycolysis in the presence of partial suppression of mitochondrial metabolism. The heterogeneous and flexible metabolic traits of most human tumors render cells able to adapt to the constantly changing energetic and biosynthetic demands by switching between predominantly glycolytic or oxidative phenotypes. Here, we describe the biological consequences of changes in the conformational state of VDAC for cancer metabolism, the mechanisms by which VDAC-openers promote cancer cell death, and the advantages of VDAC opening as a valuable pharmacological target. Particular emphasis is given to the endogenous regulation of VDAC by free tubulin and the effects of VDAC-tubulin antagonists in cancer cells. Because of its function and location, VDAC operates as a switch to turn-off mitochondrial metabolism (closed state) and increase aerobic glycolysis (pro-Warburg), or to turn-on mitochondrial metabolism (open state) and decrease glycolysis (anti-Warburg). A better understanding of the role of VDAC regulation in tumor progression is relevant both for cancer biology and for developing novel cancer chemotherapies.
Fil: Heslop, Kareem A.. University of North Carolina; Estados Unidos
Fil: Milesi, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; Argentina
Fil: Maldonado, Eduardo N.. University of North Carolina; Estados Unidos
description Most anionic metabolites including respiratory substrates, glycolytic adenosine triphosphate (ATP), and small cations that enter mitochondria, and mitochondrial ATP moving to the cytosol, cross the outer mitochondrial membrane (OMM) through voltage dependent anion channels (VDAC). The closed states of VDAC block the passage of anionic metabolites, and increase the flux of small cations, including calcium. Consequently, physiological or pharmacological regulation of VDAC opening, by conditioning the magnitude of both anion and cation fluxes, is a major contributor to mitochondrial metabolism. Tumor cells display a pro-proliferative Warburg phenotype characterized by enhanced aerobic glycolysis in the presence of partial suppression of mitochondrial metabolism. The heterogeneous and flexible metabolic traits of most human tumors render cells able to adapt to the constantly changing energetic and biosynthetic demands by switching between predominantly glycolytic or oxidative phenotypes. Here, we describe the biological consequences of changes in the conformational state of VDAC for cancer metabolism, the mechanisms by which VDAC-openers promote cancer cell death, and the advantages of VDAC opening as a valuable pharmacological target. Particular emphasis is given to the endogenous regulation of VDAC by free tubulin and the effects of VDAC-tubulin antagonists in cancer cells. Because of its function and location, VDAC operates as a switch to turn-off mitochondrial metabolism (closed state) and increase aerobic glycolysis (pro-Warburg), or to turn-on mitochondrial metabolism (open state) and decrease glycolysis (anti-Warburg). A better understanding of the role of VDAC regulation in tumor progression is relevant both for cancer biology and for developing novel cancer chemotherapies.
publishDate 2021
dc.date.none.fl_str_mv 2021-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/181061
Heslop, Kareem A.; Milesi, Verónica; Maldonado, Eduardo N.; VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges; Frontiers Media; Frontiers in Physiology; 12; 9-2021; 1-12
1664-042X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/181061
identifier_str_mv Heslop, Kareem A.; Milesi, Verónica; Maldonado, Eduardo N.; VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges; Frontiers Media; Frontiers in Physiology; 12; 9-2021; 1-12
1664-042X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fphys.2021.742839/full
info:eu-repo/semantics/altIdentifier/doi/10.3389/fphys.2021.742839
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614082365227008
score 13.070432