A branch-and-cut algorithm for the latent-class logit assortment problem

Autores
Méndez-Díaz, Isabel; Miranda Bront, Juan Jose; Vulcano, Gustavo; Zabala, Paula Lorena
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the product assortment problem of a retail operation that faces a stream of customers who are heterogeneous with respect to preferences. Each customer belongs to a market segment characterized by a consideration set that includes the alternatives viewed as options, and by the preference weights that the segment assigns to each of those alternatives. Upon arrival, he checks the offer set displayed by the firm, and either chooses one of those products or quits without purchasing according to a multinomial-logit (MNL) criterion. The firm's goal is to maximize the expected revenue extracted during a fixed time horizon. This problem also arises in the growing area of choice-based, network revenue management, where computational speed is a critical factor for the practical viability of a solution approach. This so-called latent-class, logit assortment problem is known to be NP-Hard. In this paper, we analyze unconstrained and constrained (i.e., with a limited number of products to display) versions of it, and propose a branch-and-cut algorithm that is computationally fast and leads to (nearly) optimal solutions.
Fil: Méndez-Díaz, Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Miranda Bront, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vulcano, Gustavo. Leonard N. Stern School of Business; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zabala, Paula Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Choice Behavior
Fractional Programming
Integer Programming
Multinomial Logit
Retail Operations
Revenue Management
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/68177

id CONICETDig_5e3e9490c929f899d63942cb6c397ce5
oai_identifier_str oai:ri.conicet.gov.ar:11336/68177
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A branch-and-cut algorithm for the latent-class logit assortment problemMéndez-Díaz, IsabelMiranda Bront, Juan JoseVulcano, GustavoZabala, Paula LorenaChoice BehaviorFractional ProgrammingInteger ProgrammingMultinomial LogitRetail OperationsRevenue Managementhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We study the product assortment problem of a retail operation that faces a stream of customers who are heterogeneous with respect to preferences. Each customer belongs to a market segment characterized by a consideration set that includes the alternatives viewed as options, and by the preference weights that the segment assigns to each of those alternatives. Upon arrival, he checks the offer set displayed by the firm, and either chooses one of those products or quits without purchasing according to a multinomial-logit (MNL) criterion. The firm's goal is to maximize the expected revenue extracted during a fixed time horizon. This problem also arises in the growing area of choice-based, network revenue management, where computational speed is a critical factor for the practical viability of a solution approach. This so-called latent-class, logit assortment problem is known to be NP-Hard. In this paper, we analyze unconstrained and constrained (i.e., with a limited number of products to display) versions of it, and propose a branch-and-cut algorithm that is computationally fast and leads to (nearly) optimal solutions.Fil: Méndez-Díaz, Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Miranda Bront, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vulcano, Gustavo. Leonard N. Stern School of Business; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zabala, Paula Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68177Méndez-Díaz, Isabel; Miranda Bront, Juan Jose; Vulcano, Gustavo; Zabala, Paula Lorena; A branch-and-cut algorithm for the latent-class logit assortment problem; Elsevier Science; Discrete Applied Mathematics; 164; PART 1; 3-2012; 246-2630166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2012.03.003info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X12001072info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:31:22Zoai:ri.conicet.gov.ar:11336/68177instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:31:22.823CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A branch-and-cut algorithm for the latent-class logit assortment problem
title A branch-and-cut algorithm for the latent-class logit assortment problem
spellingShingle A branch-and-cut algorithm for the latent-class logit assortment problem
Méndez-Díaz, Isabel
Choice Behavior
Fractional Programming
Integer Programming
Multinomial Logit
Retail Operations
Revenue Management
title_short A branch-and-cut algorithm for the latent-class logit assortment problem
title_full A branch-and-cut algorithm for the latent-class logit assortment problem
title_fullStr A branch-and-cut algorithm for the latent-class logit assortment problem
title_full_unstemmed A branch-and-cut algorithm for the latent-class logit assortment problem
title_sort A branch-and-cut algorithm for the latent-class logit assortment problem
dc.creator.none.fl_str_mv Méndez-Díaz, Isabel
Miranda Bront, Juan Jose
Vulcano, Gustavo
Zabala, Paula Lorena
author Méndez-Díaz, Isabel
author_facet Méndez-Díaz, Isabel
Miranda Bront, Juan Jose
Vulcano, Gustavo
Zabala, Paula Lorena
author_role author
author2 Miranda Bront, Juan Jose
Vulcano, Gustavo
Zabala, Paula Lorena
author2_role author
author
author
dc.subject.none.fl_str_mv Choice Behavior
Fractional Programming
Integer Programming
Multinomial Logit
Retail Operations
Revenue Management
topic Choice Behavior
Fractional Programming
Integer Programming
Multinomial Logit
Retail Operations
Revenue Management
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the product assortment problem of a retail operation that faces a stream of customers who are heterogeneous with respect to preferences. Each customer belongs to a market segment characterized by a consideration set that includes the alternatives viewed as options, and by the preference weights that the segment assigns to each of those alternatives. Upon arrival, he checks the offer set displayed by the firm, and either chooses one of those products or quits without purchasing according to a multinomial-logit (MNL) criterion. The firm's goal is to maximize the expected revenue extracted during a fixed time horizon. This problem also arises in the growing area of choice-based, network revenue management, where computational speed is a critical factor for the practical viability of a solution approach. This so-called latent-class, logit assortment problem is known to be NP-Hard. In this paper, we analyze unconstrained and constrained (i.e., with a limited number of products to display) versions of it, and propose a branch-and-cut algorithm that is computationally fast and leads to (nearly) optimal solutions.
Fil: Méndez-Díaz, Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Miranda Bront, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vulcano, Gustavo. Leonard N. Stern School of Business; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zabala, Paula Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We study the product assortment problem of a retail operation that faces a stream of customers who are heterogeneous with respect to preferences. Each customer belongs to a market segment characterized by a consideration set that includes the alternatives viewed as options, and by the preference weights that the segment assigns to each of those alternatives. Upon arrival, he checks the offer set displayed by the firm, and either chooses one of those products or quits without purchasing according to a multinomial-logit (MNL) criterion. The firm's goal is to maximize the expected revenue extracted during a fixed time horizon. This problem also arises in the growing area of choice-based, network revenue management, where computational speed is a critical factor for the practical viability of a solution approach. This so-called latent-class, logit assortment problem is known to be NP-Hard. In this paper, we analyze unconstrained and constrained (i.e., with a limited number of products to display) versions of it, and propose a branch-and-cut algorithm that is computationally fast and leads to (nearly) optimal solutions.
publishDate 2012
dc.date.none.fl_str_mv 2012-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/68177
Méndez-Díaz, Isabel; Miranda Bront, Juan Jose; Vulcano, Gustavo; Zabala, Paula Lorena; A branch-and-cut algorithm for the latent-class logit assortment problem; Elsevier Science; Discrete Applied Mathematics; 164; PART 1; 3-2012; 246-263
0166-218X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/68177
identifier_str_mv Méndez-Díaz, Isabel; Miranda Bront, Juan Jose; Vulcano, Gustavo; Zabala, Paula Lorena; A branch-and-cut algorithm for the latent-class logit assortment problem; Elsevier Science; Discrete Applied Mathematics; 164; PART 1; 3-2012; 246-263
0166-218X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2012.03.003
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X12001072
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082796865454080
score 12.891075