A branch-and-cut algorithm for the latent-class logit assortment problem
- Autores
- Méndez-Díaz, Isabel; Miranda Bront, Juan Jose; Vulcano, Gustavo; Zabala, Paula Lorena
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the product assortment problem of a retail operation that faces a stream of customers who are heterogeneous with respect to preferences. Each customer belongs to a market segment characterized by a consideration set that includes the alternatives viewed as options, and by the preference weights that the segment assigns to each of those alternatives. Upon arrival, he checks the offer set displayed by the firm, and either chooses one of those products or quits without purchasing according to a multinomial-logit (MNL) criterion. The firm's goal is to maximize the expected revenue extracted during a fixed time horizon. This problem also arises in the growing area of choice-based, network revenue management, where computational speed is a critical factor for the practical viability of a solution approach. This so-called latent-class, logit assortment problem is known to be NP-Hard. In this paper, we analyze unconstrained and constrained (i.e., with a limited number of products to display) versions of it, and propose a branch-and-cut algorithm that is computationally fast and leads to (nearly) optimal solutions.
Fil: Méndez-Díaz, Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Miranda Bront, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vulcano, Gustavo. Leonard N. Stern School of Business; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zabala, Paula Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Choice Behavior
Fractional Programming
Integer Programming
Multinomial Logit
Retail Operations
Revenue Management - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/68177
Ver los metadatos del registro completo
id |
CONICETDig_5e3e9490c929f899d63942cb6c397ce5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/68177 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A branch-and-cut algorithm for the latent-class logit assortment problemMéndez-Díaz, IsabelMiranda Bront, Juan JoseVulcano, GustavoZabala, Paula LorenaChoice BehaviorFractional ProgrammingInteger ProgrammingMultinomial LogitRetail OperationsRevenue Managementhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We study the product assortment problem of a retail operation that faces a stream of customers who are heterogeneous with respect to preferences. Each customer belongs to a market segment characterized by a consideration set that includes the alternatives viewed as options, and by the preference weights that the segment assigns to each of those alternatives. Upon arrival, he checks the offer set displayed by the firm, and either chooses one of those products or quits without purchasing according to a multinomial-logit (MNL) criterion. The firm's goal is to maximize the expected revenue extracted during a fixed time horizon. This problem also arises in the growing area of choice-based, network revenue management, where computational speed is a critical factor for the practical viability of a solution approach. This so-called latent-class, logit assortment problem is known to be NP-Hard. In this paper, we analyze unconstrained and constrained (i.e., with a limited number of products to display) versions of it, and propose a branch-and-cut algorithm that is computationally fast and leads to (nearly) optimal solutions.Fil: Méndez-Díaz, Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Miranda Bront, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vulcano, Gustavo. Leonard N. Stern School of Business; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zabala, Paula Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68177Méndez-Díaz, Isabel; Miranda Bront, Juan Jose; Vulcano, Gustavo; Zabala, Paula Lorena; A branch-and-cut algorithm for the latent-class logit assortment problem; Elsevier Science; Discrete Applied Mathematics; 164; PART 1; 3-2012; 246-2630166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2012.03.003info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X12001072info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:31:22Zoai:ri.conicet.gov.ar:11336/68177instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:31:22.823CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A branch-and-cut algorithm for the latent-class logit assortment problem |
title |
A branch-and-cut algorithm for the latent-class logit assortment problem |
spellingShingle |
A branch-and-cut algorithm for the latent-class logit assortment problem Méndez-Díaz, Isabel Choice Behavior Fractional Programming Integer Programming Multinomial Logit Retail Operations Revenue Management |
title_short |
A branch-and-cut algorithm for the latent-class logit assortment problem |
title_full |
A branch-and-cut algorithm for the latent-class logit assortment problem |
title_fullStr |
A branch-and-cut algorithm for the latent-class logit assortment problem |
title_full_unstemmed |
A branch-and-cut algorithm for the latent-class logit assortment problem |
title_sort |
A branch-and-cut algorithm for the latent-class logit assortment problem |
dc.creator.none.fl_str_mv |
Méndez-Díaz, Isabel Miranda Bront, Juan Jose Vulcano, Gustavo Zabala, Paula Lorena |
author |
Méndez-Díaz, Isabel |
author_facet |
Méndez-Díaz, Isabel Miranda Bront, Juan Jose Vulcano, Gustavo Zabala, Paula Lorena |
author_role |
author |
author2 |
Miranda Bront, Juan Jose Vulcano, Gustavo Zabala, Paula Lorena |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Choice Behavior Fractional Programming Integer Programming Multinomial Logit Retail Operations Revenue Management |
topic |
Choice Behavior Fractional Programming Integer Programming Multinomial Logit Retail Operations Revenue Management |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the product assortment problem of a retail operation that faces a stream of customers who are heterogeneous with respect to preferences. Each customer belongs to a market segment characterized by a consideration set that includes the alternatives viewed as options, and by the preference weights that the segment assigns to each of those alternatives. Upon arrival, he checks the offer set displayed by the firm, and either chooses one of those products or quits without purchasing according to a multinomial-logit (MNL) criterion. The firm's goal is to maximize the expected revenue extracted during a fixed time horizon. This problem also arises in the growing area of choice-based, network revenue management, where computational speed is a critical factor for the practical viability of a solution approach. This so-called latent-class, logit assortment problem is known to be NP-Hard. In this paper, we analyze unconstrained and constrained (i.e., with a limited number of products to display) versions of it, and propose a branch-and-cut algorithm that is computationally fast and leads to (nearly) optimal solutions. Fil: Méndez-Díaz, Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Miranda Bront, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Vulcano, Gustavo. Leonard N. Stern School of Business; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Zabala, Paula Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We study the product assortment problem of a retail operation that faces a stream of customers who are heterogeneous with respect to preferences. Each customer belongs to a market segment characterized by a consideration set that includes the alternatives viewed as options, and by the preference weights that the segment assigns to each of those alternatives. Upon arrival, he checks the offer set displayed by the firm, and either chooses one of those products or quits without purchasing according to a multinomial-logit (MNL) criterion. The firm's goal is to maximize the expected revenue extracted during a fixed time horizon. This problem also arises in the growing area of choice-based, network revenue management, where computational speed is a critical factor for the practical viability of a solution approach. This so-called latent-class, logit assortment problem is known to be NP-Hard. In this paper, we analyze unconstrained and constrained (i.e., with a limited number of products to display) versions of it, and propose a branch-and-cut algorithm that is computationally fast and leads to (nearly) optimal solutions. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/68177 Méndez-Díaz, Isabel; Miranda Bront, Juan Jose; Vulcano, Gustavo; Zabala, Paula Lorena; A branch-and-cut algorithm for the latent-class logit assortment problem; Elsevier Science; Discrete Applied Mathematics; 164; PART 1; 3-2012; 246-263 0166-218X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/68177 |
identifier_str_mv |
Méndez-Díaz, Isabel; Miranda Bront, Juan Jose; Vulcano, Gustavo; Zabala, Paula Lorena; A branch-and-cut algorithm for the latent-class logit assortment problem; Elsevier Science; Discrete Applied Mathematics; 164; PART 1; 3-2012; 246-263 0166-218X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2012.03.003 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X12001072 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082796865454080 |
score |
12.891075 |