Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index
- Autores
- Holzman, Mauro Ezequiel; Rivas, Raúl Eduardo; Piccolo, Maria Cintia
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Soil moisture availability affects rainfed crop yield. Therefore, the development of methods for pre-harvest yield prediction is essential for the food security. A study was carried out to estimate regional crop yield using the Temperature Vegetation Dryness Index (TVDI). Triangular scatters from land surface temperature (LST) and enhanced vegetation index (EVI) space from MODIS (Moderate Resolution Imaging Spectroradiometer) were utilized to obtain TVDI and to estimate soil moisture availability. Then soybean and wheat crops yield was estimated on four agro-climatic zones of Argentine Pampas. TVDI showed a strong correlation with soil moisture measurements, with R2 values ranged from 0.61 to 0.83 and also it was in agreement with spatial pattern of soil moisture. Moreover, results showed that TVDI data can be used effectively to predict crop yield on the Argentine Pampas. Depending on the agro-climatic zone, R2 values ranged from 0.68 to 0.79 for soybean crop and 0.76 to 0.81 for wheat. The RMSE values were 366 and 380 kg ha-1 for soybean and they varied between 300 and 550 kg ha-1 in the case of wheat crop. When expressed as percentages of actual yield, the RMSE values ranged from 12 to 13% for soybean and 14 to 22% for wheat. The bias values indicated that the obtained models underestimated soybean and wheat yield. Accurate crop grain yield forecast using the developed regression models was achieved one to three months before harvest. In many cases the results were better than others obtained using only a vegetation index, showing the aptitude of surface temperature and vegetation index combination to reflect the crop water condition. Finally, the analysis of a wide range of soil moisture availability allowed us to develop a generalized model of crop yield and dryness index relationship which could be applicable in other regions and crops at regional scale.
Fil: Holzman, Mauro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul; Argentina
Fil: Rivas, Raúl Eduardo. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul; Argentina
Fil: Piccolo, Maria Cintia. Universidad Nacional del Sur. Departamento de Geografía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Soil Moisture
Modis
Optical Thermal
Crop Yield Forecasting
Remote Sensing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/12503
Ver los metadatos del registro completo
id |
CONICETDig_5debea1b963859181260939accfc3c2c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/12503 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation indexHolzman, Mauro EzequielRivas, Raúl EduardoPiccolo, Maria CintiaSoil MoistureModisOptical ThermalCrop Yield ForecastingRemote Sensinghttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Soil moisture availability affects rainfed crop yield. Therefore, the development of methods for pre-harvest yield prediction is essential for the food security. A study was carried out to estimate regional crop yield using the Temperature Vegetation Dryness Index (TVDI). Triangular scatters from land surface temperature (LST) and enhanced vegetation index (EVI) space from MODIS (Moderate Resolution Imaging Spectroradiometer) were utilized to obtain TVDI and to estimate soil moisture availability. Then soybean and wheat crops yield was estimated on four agro-climatic zones of Argentine Pampas. TVDI showed a strong correlation with soil moisture measurements, with R2 values ranged from 0.61 to 0.83 and also it was in agreement with spatial pattern of soil moisture. Moreover, results showed that TVDI data can be used effectively to predict crop yield on the Argentine Pampas. Depending on the agro-climatic zone, R2 values ranged from 0.68 to 0.79 for soybean crop and 0.76 to 0.81 for wheat. The RMSE values were 366 and 380 kg ha-1 for soybean and they varied between 300 and 550 kg ha-1 in the case of wheat crop. When expressed as percentages of actual yield, the RMSE values ranged from 12 to 13% for soybean and 14 to 22% for wheat. The bias values indicated that the obtained models underestimated soybean and wheat yield. Accurate crop grain yield forecast using the developed regression models was achieved one to three months before harvest. In many cases the results were better than others obtained using only a vegetation index, showing the aptitude of surface temperature and vegetation index combination to reflect the crop water condition. Finally, the analysis of a wide range of soil moisture availability allowed us to develop a generalized model of crop yield and dryness index relationship which could be applicable in other regions and crops at regional scale.Fil: Holzman, Mauro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul; ArgentinaFil: Rivas, Raúl Eduardo. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul; ArgentinaFil: Piccolo, Maria Cintia. Universidad Nacional del Sur. Departamento de Geografía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12503Holzman, Mauro Ezequiel; Rivas, Raúl Eduardo; Piccolo, Maria Cintia; Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index; Elsevier Science; Itc Journal; 28; 5-2014; 181-1920303-2434enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0303243413001748info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1016/j.jag.2013.12.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:40Zoai:ri.conicet.gov.ar:11336/12503instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:41.078CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index |
title |
Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index |
spellingShingle |
Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index Holzman, Mauro Ezequiel Soil Moisture Modis Optical Thermal Crop Yield Forecasting Remote Sensing |
title_short |
Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index |
title_full |
Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index |
title_fullStr |
Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index |
title_full_unstemmed |
Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index |
title_sort |
Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index |
dc.creator.none.fl_str_mv |
Holzman, Mauro Ezequiel Rivas, Raúl Eduardo Piccolo, Maria Cintia |
author |
Holzman, Mauro Ezequiel |
author_facet |
Holzman, Mauro Ezequiel Rivas, Raúl Eduardo Piccolo, Maria Cintia |
author_role |
author |
author2 |
Rivas, Raúl Eduardo Piccolo, Maria Cintia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Soil Moisture Modis Optical Thermal Crop Yield Forecasting Remote Sensing |
topic |
Soil Moisture Modis Optical Thermal Crop Yield Forecasting Remote Sensing |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Soil moisture availability affects rainfed crop yield. Therefore, the development of methods for pre-harvest yield prediction is essential for the food security. A study was carried out to estimate regional crop yield using the Temperature Vegetation Dryness Index (TVDI). Triangular scatters from land surface temperature (LST) and enhanced vegetation index (EVI) space from MODIS (Moderate Resolution Imaging Spectroradiometer) were utilized to obtain TVDI and to estimate soil moisture availability. Then soybean and wheat crops yield was estimated on four agro-climatic zones of Argentine Pampas. TVDI showed a strong correlation with soil moisture measurements, with R2 values ranged from 0.61 to 0.83 and also it was in agreement with spatial pattern of soil moisture. Moreover, results showed that TVDI data can be used effectively to predict crop yield on the Argentine Pampas. Depending on the agro-climatic zone, R2 values ranged from 0.68 to 0.79 for soybean crop and 0.76 to 0.81 for wheat. The RMSE values were 366 and 380 kg ha-1 for soybean and they varied between 300 and 550 kg ha-1 in the case of wheat crop. When expressed as percentages of actual yield, the RMSE values ranged from 12 to 13% for soybean and 14 to 22% for wheat. The bias values indicated that the obtained models underestimated soybean and wheat yield. Accurate crop grain yield forecast using the developed regression models was achieved one to three months before harvest. In many cases the results were better than others obtained using only a vegetation index, showing the aptitude of surface temperature and vegetation index combination to reflect the crop water condition. Finally, the analysis of a wide range of soil moisture availability allowed us to develop a generalized model of crop yield and dryness index relationship which could be applicable in other regions and crops at regional scale. Fil: Holzman, Mauro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul; Argentina Fil: Rivas, Raúl Eduardo. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Azul; Argentina Fil: Piccolo, Maria Cintia. Universidad Nacional del Sur. Departamento de Geografía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Soil moisture availability affects rainfed crop yield. Therefore, the development of methods for pre-harvest yield prediction is essential for the food security. A study was carried out to estimate regional crop yield using the Temperature Vegetation Dryness Index (TVDI). Triangular scatters from land surface temperature (LST) and enhanced vegetation index (EVI) space from MODIS (Moderate Resolution Imaging Spectroradiometer) were utilized to obtain TVDI and to estimate soil moisture availability. Then soybean and wheat crops yield was estimated on four agro-climatic zones of Argentine Pampas. TVDI showed a strong correlation with soil moisture measurements, with R2 values ranged from 0.61 to 0.83 and also it was in agreement with spatial pattern of soil moisture. Moreover, results showed that TVDI data can be used effectively to predict crop yield on the Argentine Pampas. Depending on the agro-climatic zone, R2 values ranged from 0.68 to 0.79 for soybean crop and 0.76 to 0.81 for wheat. The RMSE values were 366 and 380 kg ha-1 for soybean and they varied between 300 and 550 kg ha-1 in the case of wheat crop. When expressed as percentages of actual yield, the RMSE values ranged from 12 to 13% for soybean and 14 to 22% for wheat. The bias values indicated that the obtained models underestimated soybean and wheat yield. Accurate crop grain yield forecast using the developed regression models was achieved one to three months before harvest. In many cases the results were better than others obtained using only a vegetation index, showing the aptitude of surface temperature and vegetation index combination to reflect the crop water condition. Finally, the analysis of a wide range of soil moisture availability allowed us to develop a generalized model of crop yield and dryness index relationship which could be applicable in other regions and crops at regional scale. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/12503 Holzman, Mauro Ezequiel; Rivas, Raúl Eduardo; Piccolo, Maria Cintia; Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index; Elsevier Science; Itc Journal; 28; 5-2014; 181-192 0303-2434 |
url |
http://hdl.handle.net/11336/12503 |
identifier_str_mv |
Holzman, Mauro Ezequiel; Rivas, Raúl Eduardo; Piccolo, Maria Cintia; Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index; Elsevier Science; Itc Journal; 28; 5-2014; 181-192 0303-2434 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0303243413001748 info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1016/j.jag.2013.12.006 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613833558065152 |
score |
13.070432 |