Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101)
- Autores
- Simion, Cristian Eugen; Schipani, Federico; Papadogianni, Alexandra; Stanoiu, Adelina; Budde, Melanie; Oprea, Alexandru; Weimar, Udo; Bierwagen, Oliver; Barsan, Nicolae
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Semiconducting metal oxide (SMOX)-based gas sensors are indispensable for safety and health applications, for example, explosive, toxic gas alarms, controls for intake into car cabins, and monitor for industrial processes. In the past, the sensor community has been studying polycrystalline materials as sensors where the porous and random microstructure of the SMOX does not allow a separation of the phenomena involved in the sensing process. This led to conduction models that can model and predict the behavior of the overall response, but they were not capable of giving fundamental information regarding the basic mechanisms taking place. The study of epitaxial layers is a definite improvement, allowing clarifying the different aspects and contributions of the sensing mechanisms. A detailed analytical model of the transduction function for n-A nd p-type single-crystalline/compact metal oxide gas sensors was developed that directly relates the conductance of the sample with changes in the surface electrostatic potential. Combined dc resistance and work function measurements were used in a compact SnO2(101) layer in operando conditions that allowed us to check the validity of our model in the region where Boltzmann approximation holds to determine the surface and bulk properties of the material.
Fil: Simion, Cristian Eugen. Institut de Physique Des Matériaux, Bucarest-magurele; Rumania
Fil: Schipani, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Papadogianni, Alexandra. Paul Drude Institut Fur Festkorperelektronik; Alemania
Fil: Stanoiu, Adelina. Institut de Physique Des Matériaux, Bucarest-magurele; Rumania
Fil: Budde, Melanie. Paul Drude Institut Fur Festkorperelektronik; Alemania
Fil: Oprea, Alexandru. Universität Tübingen; Alemania
Fil: Weimar, Udo. Universität Tübingen; Alemania
Fil: Bierwagen, Oliver. Paul Drude Institut Fur Festkorperelektronik; Alemania
Fil: Barsan, Nicolae. Universität Tübingen; Alemania - Materia
-
Compact layers
Epitaxial SnO2
Single-crystalline
Conduction model
SMOX
Gas sensor - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/121278
Ver los metadatos del registro completo
id |
CONICETDig_5dc5cb1171e3277feb6532288d348a64 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/121278 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101)Simion, Cristian EugenSchipani, FedericoPapadogianni, AlexandraStanoiu, AdelinaBudde, MelanieOprea, AlexandruWeimar, UdoBierwagen, OliverBarsan, NicolaeCompact layersEpitaxial SnO2Single-crystallineConduction modelSMOXGas sensorhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Semiconducting metal oxide (SMOX)-based gas sensors are indispensable for safety and health applications, for example, explosive, toxic gas alarms, controls for intake into car cabins, and monitor for industrial processes. In the past, the sensor community has been studying polycrystalline materials as sensors where the porous and random microstructure of the SMOX does not allow a separation of the phenomena involved in the sensing process. This led to conduction models that can model and predict the behavior of the overall response, but they were not capable of giving fundamental information regarding the basic mechanisms taking place. The study of epitaxial layers is a definite improvement, allowing clarifying the different aspects and contributions of the sensing mechanisms. A detailed analytical model of the transduction function for n-A nd p-type single-crystalline/compact metal oxide gas sensors was developed that directly relates the conductance of the sample with changes in the surface electrostatic potential. Combined dc resistance and work function measurements were used in a compact SnO2(101) layer in operando conditions that allowed us to check the validity of our model in the region where Boltzmann approximation holds to determine the surface and bulk properties of the material.Fil: Simion, Cristian Eugen. Institut de Physique Des Matériaux, Bucarest-magurele; RumaniaFil: Schipani, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Papadogianni, Alexandra. Paul Drude Institut Fur Festkorperelektronik; AlemaniaFil: Stanoiu, Adelina. Institut de Physique Des Matériaux, Bucarest-magurele; RumaniaFil: Budde, Melanie. Paul Drude Institut Fur Festkorperelektronik; AlemaniaFil: Oprea, Alexandru. Universität Tübingen; AlemaniaFil: Weimar, Udo. Universität Tübingen; AlemaniaFil: Bierwagen, Oliver. Paul Drude Institut Fur Festkorperelektronik; AlemaniaFil: Barsan, Nicolae. Universität Tübingen; AlemaniaAmerican Chemical Society2019-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/121278Simion, Cristian Eugen; Schipani, Federico; Papadogianni, Alexandra; Stanoiu, Adelina; Budde, Melanie; et al.; Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101); American Chemical Society; ACS Sensors; 4; 9; 9-2019; 2420-24282379-3694CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acssensors.9b01018info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acssensors.9b01018info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:51Zoai:ri.conicet.gov.ar:11336/121278instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:52.033CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101) |
title |
Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101) |
spellingShingle |
Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101) Simion, Cristian Eugen Compact layers Epitaxial SnO2 Single-crystalline Conduction model SMOX Gas sensor |
title_short |
Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101) |
title_full |
Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101) |
title_fullStr |
Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101) |
title_full_unstemmed |
Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101) |
title_sort |
Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101) |
dc.creator.none.fl_str_mv |
Simion, Cristian Eugen Schipani, Federico Papadogianni, Alexandra Stanoiu, Adelina Budde, Melanie Oprea, Alexandru Weimar, Udo Bierwagen, Oliver Barsan, Nicolae |
author |
Simion, Cristian Eugen |
author_facet |
Simion, Cristian Eugen Schipani, Federico Papadogianni, Alexandra Stanoiu, Adelina Budde, Melanie Oprea, Alexandru Weimar, Udo Bierwagen, Oliver Barsan, Nicolae |
author_role |
author |
author2 |
Schipani, Federico Papadogianni, Alexandra Stanoiu, Adelina Budde, Melanie Oprea, Alexandru Weimar, Udo Bierwagen, Oliver Barsan, Nicolae |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Compact layers Epitaxial SnO2 Single-crystalline Conduction model SMOX Gas sensor |
topic |
Compact layers Epitaxial SnO2 Single-crystalline Conduction model SMOX Gas sensor |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Semiconducting metal oxide (SMOX)-based gas sensors are indispensable for safety and health applications, for example, explosive, toxic gas alarms, controls for intake into car cabins, and monitor for industrial processes. In the past, the sensor community has been studying polycrystalline materials as sensors where the porous and random microstructure of the SMOX does not allow a separation of the phenomena involved in the sensing process. This led to conduction models that can model and predict the behavior of the overall response, but they were not capable of giving fundamental information regarding the basic mechanisms taking place. The study of epitaxial layers is a definite improvement, allowing clarifying the different aspects and contributions of the sensing mechanisms. A detailed analytical model of the transduction function for n-A nd p-type single-crystalline/compact metal oxide gas sensors was developed that directly relates the conductance of the sample with changes in the surface electrostatic potential. Combined dc resistance and work function measurements were used in a compact SnO2(101) layer in operando conditions that allowed us to check the validity of our model in the region where Boltzmann approximation holds to determine the surface and bulk properties of the material. Fil: Simion, Cristian Eugen. Institut de Physique Des Matériaux, Bucarest-magurele; Rumania Fil: Schipani, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Papadogianni, Alexandra. Paul Drude Institut Fur Festkorperelektronik; Alemania Fil: Stanoiu, Adelina. Institut de Physique Des Matériaux, Bucarest-magurele; Rumania Fil: Budde, Melanie. Paul Drude Institut Fur Festkorperelektronik; Alemania Fil: Oprea, Alexandru. Universität Tübingen; Alemania Fil: Weimar, Udo. Universität Tübingen; Alemania Fil: Bierwagen, Oliver. Paul Drude Institut Fur Festkorperelektronik; Alemania Fil: Barsan, Nicolae. Universität Tübingen; Alemania |
description |
Semiconducting metal oxide (SMOX)-based gas sensors are indispensable for safety and health applications, for example, explosive, toxic gas alarms, controls for intake into car cabins, and monitor for industrial processes. In the past, the sensor community has been studying polycrystalline materials as sensors where the porous and random microstructure of the SMOX does not allow a separation of the phenomena involved in the sensing process. This led to conduction models that can model and predict the behavior of the overall response, but they were not capable of giving fundamental information regarding the basic mechanisms taking place. The study of epitaxial layers is a definite improvement, allowing clarifying the different aspects and contributions of the sensing mechanisms. A detailed analytical model of the transduction function for n-A nd p-type single-crystalline/compact metal oxide gas sensors was developed that directly relates the conductance of the sample with changes in the surface electrostatic potential. Combined dc resistance and work function measurements were used in a compact SnO2(101) layer in operando conditions that allowed us to check the validity of our model in the region where Boltzmann approximation holds to determine the surface and bulk properties of the material. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/121278 Simion, Cristian Eugen; Schipani, Federico; Papadogianni, Alexandra; Stanoiu, Adelina; Budde, Melanie; et al.; Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101); American Chemical Society; ACS Sensors; 4; 9; 9-2019; 2420-2428 2379-3694 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/121278 |
identifier_str_mv |
Simion, Cristian Eugen; Schipani, Federico; Papadogianni, Alexandra; Stanoiu, Adelina; Budde, Melanie; et al.; Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101); American Chemical Society; ACS Sensors; 4; 9; 9-2019; 2420-2428 2379-3694 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/acssensors.9b01018 info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acssensors.9b01018 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613943482384384 |
score |
13.070432 |