Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101)

Autores
Simion, Cristian Eugen; Schipani, Federico; Papadogianni, Alexandra; Stanoiu, Adelina; Budde, Melanie; Oprea, Alexandru; Weimar, Udo; Bierwagen, Oliver; Barsan, Nicolae
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Semiconducting metal oxide (SMOX)-based gas sensors are indispensable for safety and health applications, for example, explosive, toxic gas alarms, controls for intake into car cabins, and monitor for industrial processes. In the past, the sensor community has been studying polycrystalline materials as sensors where the porous and random microstructure of the SMOX does not allow a separation of the phenomena involved in the sensing process. This led to conduction models that can model and predict the behavior of the overall response, but they were not capable of giving fundamental information regarding the basic mechanisms taking place. The study of epitaxial layers is a definite improvement, allowing clarifying the different aspects and contributions of the sensing mechanisms. A detailed analytical model of the transduction function for n-A nd p-type single-crystalline/compact metal oxide gas sensors was developed that directly relates the conductance of the sample with changes in the surface electrostatic potential. Combined dc resistance and work function measurements were used in a compact SnO2(101) layer in operando conditions that allowed us to check the validity of our model in the region where Boltzmann approximation holds to determine the surface and bulk properties of the material.
Fil: Simion, Cristian Eugen. Institut de Physique Des Matériaux, Bucarest-magurele; Rumania
Fil: Schipani, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Papadogianni, Alexandra. Paul Drude Institut Fur Festkorperelektronik; Alemania
Fil: Stanoiu, Adelina. Institut de Physique Des Matériaux, Bucarest-magurele; Rumania
Fil: Budde, Melanie. Paul Drude Institut Fur Festkorperelektronik; Alemania
Fil: Oprea, Alexandru. Universität Tübingen; Alemania
Fil: Weimar, Udo. Universität Tübingen; Alemania
Fil: Bierwagen, Oliver. Paul Drude Institut Fur Festkorperelektronik; Alemania
Fil: Barsan, Nicolae. Universität Tübingen; Alemania
Materia
Compact layers
Epitaxial SnO2
Single-crystalline
Conduction model
SMOX
Gas sensor
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/121278

id CONICETDig_5dc5cb1171e3277feb6532288d348a64
oai_identifier_str oai:ri.conicet.gov.ar:11336/121278
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101)Simion, Cristian EugenSchipani, FedericoPapadogianni, AlexandraStanoiu, AdelinaBudde, MelanieOprea, AlexandruWeimar, UdoBierwagen, OliverBarsan, NicolaeCompact layersEpitaxial SnO2Single-crystallineConduction modelSMOXGas sensorhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Semiconducting metal oxide (SMOX)-based gas sensors are indispensable for safety and health applications, for example, explosive, toxic gas alarms, controls for intake into car cabins, and monitor for industrial processes. In the past, the sensor community has been studying polycrystalline materials as sensors where the porous and random microstructure of the SMOX does not allow a separation of the phenomena involved in the sensing process. This led to conduction models that can model and predict the behavior of the overall response, but they were not capable of giving fundamental information regarding the basic mechanisms taking place. The study of epitaxial layers is a definite improvement, allowing clarifying the different aspects and contributions of the sensing mechanisms. A detailed analytical model of the transduction function for n-A nd p-type single-crystalline/compact metal oxide gas sensors was developed that directly relates the conductance of the sample with changes in the surface electrostatic potential. Combined dc resistance and work function measurements were used in a compact SnO2(101) layer in operando conditions that allowed us to check the validity of our model in the region where Boltzmann approximation holds to determine the surface and bulk properties of the material.Fil: Simion, Cristian Eugen. Institut de Physique Des Matériaux, Bucarest-magurele; RumaniaFil: Schipani, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Papadogianni, Alexandra. Paul Drude Institut Fur Festkorperelektronik; AlemaniaFil: Stanoiu, Adelina. Institut de Physique Des Matériaux, Bucarest-magurele; RumaniaFil: Budde, Melanie. Paul Drude Institut Fur Festkorperelektronik; AlemaniaFil: Oprea, Alexandru. Universität Tübingen; AlemaniaFil: Weimar, Udo. Universität Tübingen; AlemaniaFil: Bierwagen, Oliver. Paul Drude Institut Fur Festkorperelektronik; AlemaniaFil: Barsan, Nicolae. Universität Tübingen; AlemaniaAmerican Chemical Society2019-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/121278Simion, Cristian Eugen; Schipani, Federico; Papadogianni, Alexandra; Stanoiu, Adelina; Budde, Melanie; et al.; Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101); American Chemical Society; ACS Sensors; 4; 9; 9-2019; 2420-24282379-3694CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acssensors.9b01018info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acssensors.9b01018info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:51Zoai:ri.conicet.gov.ar:11336/121278instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:52.033CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101)
title Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101)
spellingShingle Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101)
Simion, Cristian Eugen
Compact layers
Epitaxial SnO2
Single-crystalline
Conduction model
SMOX
Gas sensor
title_short Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101)
title_full Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101)
title_fullStr Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101)
title_full_unstemmed Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101)
title_sort Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101)
dc.creator.none.fl_str_mv Simion, Cristian Eugen
Schipani, Federico
Papadogianni, Alexandra
Stanoiu, Adelina
Budde, Melanie
Oprea, Alexandru
Weimar, Udo
Bierwagen, Oliver
Barsan, Nicolae
author Simion, Cristian Eugen
author_facet Simion, Cristian Eugen
Schipani, Federico
Papadogianni, Alexandra
Stanoiu, Adelina
Budde, Melanie
Oprea, Alexandru
Weimar, Udo
Bierwagen, Oliver
Barsan, Nicolae
author_role author
author2 Schipani, Federico
Papadogianni, Alexandra
Stanoiu, Adelina
Budde, Melanie
Oprea, Alexandru
Weimar, Udo
Bierwagen, Oliver
Barsan, Nicolae
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Compact layers
Epitaxial SnO2
Single-crystalline
Conduction model
SMOX
Gas sensor
topic Compact layers
Epitaxial SnO2
Single-crystalline
Conduction model
SMOX
Gas sensor
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Semiconducting metal oxide (SMOX)-based gas sensors are indispensable for safety and health applications, for example, explosive, toxic gas alarms, controls for intake into car cabins, and monitor for industrial processes. In the past, the sensor community has been studying polycrystalline materials as sensors where the porous and random microstructure of the SMOX does not allow a separation of the phenomena involved in the sensing process. This led to conduction models that can model and predict the behavior of the overall response, but they were not capable of giving fundamental information regarding the basic mechanisms taking place. The study of epitaxial layers is a definite improvement, allowing clarifying the different aspects and contributions of the sensing mechanisms. A detailed analytical model of the transduction function for n-A nd p-type single-crystalline/compact metal oxide gas sensors was developed that directly relates the conductance of the sample with changes in the surface electrostatic potential. Combined dc resistance and work function measurements were used in a compact SnO2(101) layer in operando conditions that allowed us to check the validity of our model in the region where Boltzmann approximation holds to determine the surface and bulk properties of the material.
Fil: Simion, Cristian Eugen. Institut de Physique Des Matériaux, Bucarest-magurele; Rumania
Fil: Schipani, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Papadogianni, Alexandra. Paul Drude Institut Fur Festkorperelektronik; Alemania
Fil: Stanoiu, Adelina. Institut de Physique Des Matériaux, Bucarest-magurele; Rumania
Fil: Budde, Melanie. Paul Drude Institut Fur Festkorperelektronik; Alemania
Fil: Oprea, Alexandru. Universität Tübingen; Alemania
Fil: Weimar, Udo. Universität Tübingen; Alemania
Fil: Bierwagen, Oliver. Paul Drude Institut Fur Festkorperelektronik; Alemania
Fil: Barsan, Nicolae. Universität Tübingen; Alemania
description Semiconducting metal oxide (SMOX)-based gas sensors are indispensable for safety and health applications, for example, explosive, toxic gas alarms, controls for intake into car cabins, and monitor for industrial processes. In the past, the sensor community has been studying polycrystalline materials as sensors where the porous and random microstructure of the SMOX does not allow a separation of the phenomena involved in the sensing process. This led to conduction models that can model and predict the behavior of the overall response, but they were not capable of giving fundamental information regarding the basic mechanisms taking place. The study of epitaxial layers is a definite improvement, allowing clarifying the different aspects and contributions of the sensing mechanisms. A detailed analytical model of the transduction function for n-A nd p-type single-crystalline/compact metal oxide gas sensors was developed that directly relates the conductance of the sample with changes in the surface electrostatic potential. Combined dc resistance and work function measurements were used in a compact SnO2(101) layer in operando conditions that allowed us to check the validity of our model in the region where Boltzmann approximation holds to determine the surface and bulk properties of the material.
publishDate 2019
dc.date.none.fl_str_mv 2019-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/121278
Simion, Cristian Eugen; Schipani, Federico; Papadogianni, Alexandra; Stanoiu, Adelina; Budde, Melanie; et al.; Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101); American Chemical Society; ACS Sensors; 4; 9; 9-2019; 2420-2428
2379-3694
CONICET Digital
CONICET
url http://hdl.handle.net/11336/121278
identifier_str_mv Simion, Cristian Eugen; Schipani, Federico; Papadogianni, Alexandra; Stanoiu, Adelina; Budde, Melanie; et al.; Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101); American Chemical Society; ACS Sensors; 4; 9; 9-2019; 2420-2428
2379-3694
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/acssensors.9b01018
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acssensors.9b01018
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613943482384384
score 13.070432