Suffix Array Performance Analysis for Multi-Core Platforms

Autores
Gil Costa, Graciela Verónica; Ochoa, Cesar; Printista, Alicia Marcela
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Performance analysis helps to understand how a particular invocation of an algorithm executes. Using the information provided by specific tools like the profiler tool Perf or the Performance Application Programming Interface (PAPI), the performance analysis process provides a bridging relationship between the algorithm execution and processor events according to the metrics defined by the developer. It is also useful to find performance limitations which depend exclusively on the code. Furthermore, to change an algorithm in order to optimize the code requires more than understanding of the obtained performance. It requires understanding the problem being solved. In this work we evaluate the performance achieved by a suffix array over a 32-core platform. Suffix arrays are efficient data structures for solving complex queries in a number of applications related to text databases, for instance, biological databases. We perform experiments to evaluate hardware features directly aimed to parallelize computation. Moreover, according to the results obtained by the performance evaluation tools, we propose an optimization technique to improve the use of the cache memory. In particular, we aim to reduce the number of cache memory replacement performed each time a new query is processed.
Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;
Fil: Ochoa, Cesar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina;
Fil: Printista, Alicia Marcela. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;
Materia
Multicore.
Suffix array.
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/1080

id CONICETDig_5d6839171b6a5581853428e3a3b92204
oai_identifier_str oai:ri.conicet.gov.ar:11336/1080
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Suffix Array Performance Analysis for Multi-Core PlatformsGil Costa, Graciela VerónicaOchoa, CesarPrintista, Alicia MarcelaMulticore.Suffix array.https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2Performance analysis helps to understand how a particular invocation of an algorithm executes. Using the information provided by specific tools like the profiler tool Perf or the Performance Application Programming Interface (PAPI), the performance analysis process provides a bridging relationship between the algorithm execution and processor events according to the metrics defined by the developer. It is also useful to find performance limitations which depend exclusively on the code. Furthermore, to change an algorithm in order to optimize the code requires more than understanding of the obtained performance. It requires understanding the problem being solved. In this work we evaluate the performance achieved by a suffix array over a 32-core platform. Suffix arrays are efficient data structures for solving complex queries in a number of applications related to text databases, for instance, biological databases. We perform experiments to evaluate hardware features directly aimed to parallelize computation. Moreover, according to the results obtained by the performance evaluation tools, we propose an optimization technique to improve the use of the cache memory. In particular, we aim to reduce the number of cache memory replacement performed each time a new query is processed.Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;Fil: Ochoa, Cesar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina;Fil: Printista, Alicia Marcela. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;Andrei Tchernykh, René Luna-García, Juan Manuel Ramírez-Alcaraz: Editorial.2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/1080Gil Costa, Graciela Verónica; Ochoa, Cesar; Printista, Alicia Marcela; Suffix Array Performance Analysis for Multi-Core Platforms; Andrei Tchernykh, René Luna-García, Juan Manuel Ramírez-Alcaraz: Editorial.; Computación y Sistemas; 17; 3; 10-2013; 391-3991405-5546enginfo:eu-repo/semantics/altIdentifier/url/http://www.redalyc.org/articulo.oa?id=61528316010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:31:12Zoai:ri.conicet.gov.ar:11336/1080instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:31:12.256CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Suffix Array Performance Analysis for Multi-Core Platforms
title Suffix Array Performance Analysis for Multi-Core Platforms
spellingShingle Suffix Array Performance Analysis for Multi-Core Platforms
Gil Costa, Graciela Verónica
Multicore.
Suffix array.
title_short Suffix Array Performance Analysis for Multi-Core Platforms
title_full Suffix Array Performance Analysis for Multi-Core Platforms
title_fullStr Suffix Array Performance Analysis for Multi-Core Platforms
title_full_unstemmed Suffix Array Performance Analysis for Multi-Core Platforms
title_sort Suffix Array Performance Analysis for Multi-Core Platforms
dc.creator.none.fl_str_mv Gil Costa, Graciela Verónica
Ochoa, Cesar
Printista, Alicia Marcela
author Gil Costa, Graciela Verónica
author_facet Gil Costa, Graciela Verónica
Ochoa, Cesar
Printista, Alicia Marcela
author_role author
author2 Ochoa, Cesar
Printista, Alicia Marcela
author2_role author
author
dc.subject.none.fl_str_mv Multicore.
Suffix array.
topic Multicore.
Suffix array.
purl_subject.fl_str_mv https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.2
dc.description.none.fl_txt_mv Performance analysis helps to understand how a particular invocation of an algorithm executes. Using the information provided by specific tools like the profiler tool Perf or the Performance Application Programming Interface (PAPI), the performance analysis process provides a bridging relationship between the algorithm execution and processor events according to the metrics defined by the developer. It is also useful to find performance limitations which depend exclusively on the code. Furthermore, to change an algorithm in order to optimize the code requires more than understanding of the obtained performance. It requires understanding the problem being solved. In this work we evaluate the performance achieved by a suffix array over a 32-core platform. Suffix arrays are efficient data structures for solving complex queries in a number of applications related to text databases, for instance, biological databases. We perform experiments to evaluate hardware features directly aimed to parallelize computation. Moreover, according to the results obtained by the performance evaluation tools, we propose an optimization technique to improve the use of the cache memory. In particular, we aim to reduce the number of cache memory replacement performed each time a new query is processed.
Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;
Fil: Ochoa, Cesar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina;
Fil: Printista, Alicia Marcela. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;
description Performance analysis helps to understand how a particular invocation of an algorithm executes. Using the information provided by specific tools like the profiler tool Perf or the Performance Application Programming Interface (PAPI), the performance analysis process provides a bridging relationship between the algorithm execution and processor events according to the metrics defined by the developer. It is also useful to find performance limitations which depend exclusively on the code. Furthermore, to change an algorithm in order to optimize the code requires more than understanding of the obtained performance. It requires understanding the problem being solved. In this work we evaluate the performance achieved by a suffix array over a 32-core platform. Suffix arrays are efficient data structures for solving complex queries in a number of applications related to text databases, for instance, biological databases. We perform experiments to evaluate hardware features directly aimed to parallelize computation. Moreover, according to the results obtained by the performance evaluation tools, we propose an optimization technique to improve the use of the cache memory. In particular, we aim to reduce the number of cache memory replacement performed each time a new query is processed.
publishDate 2013
dc.date.none.fl_str_mv 2013-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/1080
Gil Costa, Graciela Verónica; Ochoa, Cesar; Printista, Alicia Marcela; Suffix Array Performance Analysis for Multi-Core Platforms; Andrei Tchernykh, René Luna-García, Juan Manuel Ramírez-Alcaraz: Editorial.; Computación y Sistemas; 17; 3; 10-2013; 391-399
1405-5546
url http://hdl.handle.net/11336/1080
identifier_str_mv Gil Costa, Graciela Verónica; Ochoa, Cesar; Printista, Alicia Marcela; Suffix Array Performance Analysis for Multi-Core Platforms; Andrei Tchernykh, René Luna-García, Juan Manuel Ramírez-Alcaraz: Editorial.; Computación y Sistemas; 17; 3; 10-2013; 391-399
1405-5546
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.redalyc.org/articulo.oa?id=61528316010
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Andrei Tchernykh, René Luna-García, Juan Manuel Ramírez-Alcaraz: Editorial.
publisher.none.fl_str_mv Andrei Tchernykh, René Luna-García, Juan Manuel Ramírez-Alcaraz: Editorial.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083448209408000
score 13.22299