Suffix Array Performance Analysis for Multi-Core Platforms
- Autores
- Gil Costa, Graciela Verónica; Ochoa, Cesar; Printista, Alicia Marcela
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Performance analysis helps to understand how a particular invocation of an algorithm executes. Using the information provided by specific tools like the profiler tool Perf or the Performance Application Programming Interface (PAPI), the performance analysis process provides a bridging relationship between the algorithm execution and processor events according to the metrics defined by the developer. It is also useful to find performance limitations which depend exclusively on the code. Furthermore, to change an algorithm in order to optimize the code requires more than understanding of the obtained performance. It requires understanding the problem being solved. In this work we evaluate the performance achieved by a suffix array over a 32-core platform. Suffix arrays are efficient data structures for solving complex queries in a number of applications related to text databases, for instance, biological databases. We perform experiments to evaluate hardware features directly aimed to parallelize computation. Moreover, according to the results obtained by the performance evaluation tools, we propose an optimization technique to improve the use of the cache memory. In particular, we aim to reduce the number of cache memory replacement performed each time a new query is processed.
Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;
Fil: Ochoa, Cesar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina;
Fil: Printista, Alicia Marcela. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina; - Materia
-
Multicore.
Suffix array. - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/1080
Ver los metadatos del registro completo
id |
CONICETDig_5d6839171b6a5581853428e3a3b92204 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/1080 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Suffix Array Performance Analysis for Multi-Core PlatformsGil Costa, Graciela VerónicaOchoa, CesarPrintista, Alicia MarcelaMulticore.Suffix array.https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2Performance analysis helps to understand how a particular invocation of an algorithm executes. Using the information provided by specific tools like the profiler tool Perf or the Performance Application Programming Interface (PAPI), the performance analysis process provides a bridging relationship between the algorithm execution and processor events according to the metrics defined by the developer. It is also useful to find performance limitations which depend exclusively on the code. Furthermore, to change an algorithm in order to optimize the code requires more than understanding of the obtained performance. It requires understanding the problem being solved. In this work we evaluate the performance achieved by a suffix array over a 32-core platform. Suffix arrays are efficient data structures for solving complex queries in a number of applications related to text databases, for instance, biological databases. We perform experiments to evaluate hardware features directly aimed to parallelize computation. Moreover, according to the results obtained by the performance evaluation tools, we propose an optimization technique to improve the use of the cache memory. In particular, we aim to reduce the number of cache memory replacement performed each time a new query is processed.Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;Fil: Ochoa, Cesar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina;Fil: Printista, Alicia Marcela. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;Andrei Tchernykh, René Luna-García, Juan Manuel Ramírez-Alcaraz: Editorial.2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/1080Gil Costa, Graciela Verónica; Ochoa, Cesar; Printista, Alicia Marcela; Suffix Array Performance Analysis for Multi-Core Platforms; Andrei Tchernykh, René Luna-García, Juan Manuel Ramírez-Alcaraz: Editorial.; Computación y Sistemas; 17; 3; 10-2013; 391-3991405-5546enginfo:eu-repo/semantics/altIdentifier/url/http://www.redalyc.org/articulo.oa?id=61528316010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:31:12Zoai:ri.conicet.gov.ar:11336/1080instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:31:12.256CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Suffix Array Performance Analysis for Multi-Core Platforms |
title |
Suffix Array Performance Analysis for Multi-Core Platforms |
spellingShingle |
Suffix Array Performance Analysis for Multi-Core Platforms Gil Costa, Graciela Verónica Multicore. Suffix array. |
title_short |
Suffix Array Performance Analysis for Multi-Core Platforms |
title_full |
Suffix Array Performance Analysis for Multi-Core Platforms |
title_fullStr |
Suffix Array Performance Analysis for Multi-Core Platforms |
title_full_unstemmed |
Suffix Array Performance Analysis for Multi-Core Platforms |
title_sort |
Suffix Array Performance Analysis for Multi-Core Platforms |
dc.creator.none.fl_str_mv |
Gil Costa, Graciela Verónica Ochoa, Cesar Printista, Alicia Marcela |
author |
Gil Costa, Graciela Verónica |
author_facet |
Gil Costa, Graciela Verónica Ochoa, Cesar Printista, Alicia Marcela |
author_role |
author |
author2 |
Ochoa, Cesar Printista, Alicia Marcela |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Multicore. Suffix array. |
topic |
Multicore. Suffix array. |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 |
dc.description.none.fl_txt_mv |
Performance analysis helps to understand how a particular invocation of an algorithm executes. Using the information provided by specific tools like the profiler tool Perf or the Performance Application Programming Interface (PAPI), the performance analysis process provides a bridging relationship between the algorithm execution and processor events according to the metrics defined by the developer. It is also useful to find performance limitations which depend exclusively on the code. Furthermore, to change an algorithm in order to optimize the code requires more than understanding of the obtained performance. It requires understanding the problem being solved. In this work we evaluate the performance achieved by a suffix array over a 32-core platform. Suffix arrays are efficient data structures for solving complex queries in a number of applications related to text databases, for instance, biological databases. We perform experiments to evaluate hardware features directly aimed to parallelize computation. Moreover, according to the results obtained by the performance evaluation tools, we propose an optimization technique to improve the use of the cache memory. In particular, we aim to reduce the number of cache memory replacement performed each time a new query is processed. Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina; Fil: Ochoa, Cesar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina; Fil: Printista, Alicia Marcela. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina; |
description |
Performance analysis helps to understand how a particular invocation of an algorithm executes. Using the information provided by specific tools like the profiler tool Perf or the Performance Application Programming Interface (PAPI), the performance analysis process provides a bridging relationship between the algorithm execution and processor events according to the metrics defined by the developer. It is also useful to find performance limitations which depend exclusively on the code. Furthermore, to change an algorithm in order to optimize the code requires more than understanding of the obtained performance. It requires understanding the problem being solved. In this work we evaluate the performance achieved by a suffix array over a 32-core platform. Suffix arrays are efficient data structures for solving complex queries in a number of applications related to text databases, for instance, biological databases. We perform experiments to evaluate hardware features directly aimed to parallelize computation. Moreover, according to the results obtained by the performance evaluation tools, we propose an optimization technique to improve the use of the cache memory. In particular, we aim to reduce the number of cache memory replacement performed each time a new query is processed. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/1080 Gil Costa, Graciela Verónica; Ochoa, Cesar; Printista, Alicia Marcela; Suffix Array Performance Analysis for Multi-Core Platforms; Andrei Tchernykh, René Luna-García, Juan Manuel Ramírez-Alcaraz: Editorial.; Computación y Sistemas; 17; 3; 10-2013; 391-399 1405-5546 |
url |
http://hdl.handle.net/11336/1080 |
identifier_str_mv |
Gil Costa, Graciela Verónica; Ochoa, Cesar; Printista, Alicia Marcela; Suffix Array Performance Analysis for Multi-Core Platforms; Andrei Tchernykh, René Luna-García, Juan Manuel Ramírez-Alcaraz: Editorial.; Computación y Sistemas; 17; 3; 10-2013; 391-399 1405-5546 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.redalyc.org/articulo.oa?id=61528316010 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Andrei Tchernykh, René Luna-García, Juan Manuel Ramírez-Alcaraz: Editorial. |
publisher.none.fl_str_mv |
Andrei Tchernykh, René Luna-García, Juan Manuel Ramírez-Alcaraz: Editorial. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083448209408000 |
score |
13.22299 |