2D Synthetic Emitter Array methodology for improving GPR reflections

Autores
Bullo, Darío Ezequiel; Bonomo, Nestor Eduardo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Synthetic 1D-arrays of emitters are used in the area of GPR to improve primary reflections that in single-offset profiles show low continuity and amplitude due to the interference of clutter and noise. In this methodology, at each array position along the survey line, a series of single emitter-receiver measurements is performed, keeping the position of the receiver constant and placing consecutively the emitter at the positions of the nodes of the array grid. A definite phase relation between the traces that constitute each common receiver gather is established and used to shift them in time with respect to the reference-offset trace, and the results are averaged. The phase relations are defined in order to superpose constructively the primary reflections, and reduce the random noise and clutter. The 1D synthetic procedure is equivalent to narrowing the transmitted electromagnetic wave-front along the direction of a real 1D array, which reduces the interference produced by reflectors located in formerly illuminated regions of the soil, and directing the field along an emitters-reflector-receiver path that maximizes the amplitude of the primary reflection at the position of the receiver with respect to the other reflections. In this article, a previously developed 1D-array method is extended to 2D-arrays, and the results of the 2D extension are analyzed and compared to the results of the 1D-array, Common-Midpoint and Single Offset techniques. The proposed 2D procedure considers a rectangular, homogeneous geometry for the array and a simple phase-relation between the component traces. In addition to directing the wave-front towards the target, these settings make possible to reduce the width of the wave-front along both axes of the array, which is expected to enhance the 1D results. Since the dimensionality increases in the 2D geometry, the number of traces in the summation grows significantly, which should also improve the final result. As a part of the 2D methodology, a variable that represents the reflection improvement, with respect to the Single Offset method, is defined and optimized as a function of the phase differences between adjacent traces along both directions of the array and the position of the emitters-receiver group along the survey line. A final data-section is generated from the optimal values found in this step. To evaluate the results of these methodologies, two basic types of reflections are analyzed: diffractions produced by small objects and reflections at extensive interfaces. Numerical and laboratory data are considered. The effects of different numbers of emitters and distances between them on the results are investigated, in order to obtain the best result. The 2D method shows noticeable enhancements of the continuity and amplitude of the primary reflection with respect to the other methods.
Fil: Bullo, Darío Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Bonomo, Nestor Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
CLUTTER
GPR
NOISE
PHASED ARRAY
REFLECTION IMPROVEMENT
SYNTHETIC EMITTER ARRAY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/181734

id CONICETDig_add6841675456102579e8c4e92ef5f36
oai_identifier_str oai:ri.conicet.gov.ar:11336/181734
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling 2D Synthetic Emitter Array methodology for improving GPR reflectionsBullo, Darío EzequielBonomo, Nestor EduardoCLUTTERGPRNOISEPHASED ARRAYREFLECTION IMPROVEMENTSYNTHETIC EMITTER ARRAYhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Synthetic 1D-arrays of emitters are used in the area of GPR to improve primary reflections that in single-offset profiles show low continuity and amplitude due to the interference of clutter and noise. In this methodology, at each array position along the survey line, a series of single emitter-receiver measurements is performed, keeping the position of the receiver constant and placing consecutively the emitter at the positions of the nodes of the array grid. A definite phase relation between the traces that constitute each common receiver gather is established and used to shift them in time with respect to the reference-offset trace, and the results are averaged. The phase relations are defined in order to superpose constructively the primary reflections, and reduce the random noise and clutter. The 1D synthetic procedure is equivalent to narrowing the transmitted electromagnetic wave-front along the direction of a real 1D array, which reduces the interference produced by reflectors located in formerly illuminated regions of the soil, and directing the field along an emitters-reflector-receiver path that maximizes the amplitude of the primary reflection at the position of the receiver with respect to the other reflections. In this article, a previously developed 1D-array method is extended to 2D-arrays, and the results of the 2D extension are analyzed and compared to the results of the 1D-array, Common-Midpoint and Single Offset techniques. The proposed 2D procedure considers a rectangular, homogeneous geometry for the array and a simple phase-relation between the component traces. In addition to directing the wave-front towards the target, these settings make possible to reduce the width of the wave-front along both axes of the array, which is expected to enhance the 1D results. Since the dimensionality increases in the 2D geometry, the number of traces in the summation grows significantly, which should also improve the final result. As a part of the 2D methodology, a variable that represents the reflection improvement, with respect to the Single Offset method, is defined and optimized as a function of the phase differences between adjacent traces along both directions of the array and the position of the emitters-receiver group along the survey line. A final data-section is generated from the optimal values found in this step. To evaluate the results of these methodologies, two basic types of reflections are analyzed: diffractions produced by small objects and reflections at extensive interfaces. Numerical and laboratory data are considered. The effects of different numbers of emitters and distances between them on the results are investigated, in order to obtain the best result. The 2D method shows noticeable enhancements of the continuity and amplitude of the primary reflection with respect to the other methods.Fil: Bullo, Darío Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Bonomo, Nestor Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaElsevier Science2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/181734Bullo, Darío Ezequiel; Bonomo, Nestor Eduardo; 2D Synthetic Emitter Array methodology for improving GPR reflections; Elsevier Science; Journal Of Applied Geophysics; 159; 12-2018; 285-2930926-9851CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0926985118302453info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jappgeo.2018.08.005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:44:20Zoai:ri.conicet.gov.ar:11336/181734instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:44:20.773CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv 2D Synthetic Emitter Array methodology for improving GPR reflections
title 2D Synthetic Emitter Array methodology for improving GPR reflections
spellingShingle 2D Synthetic Emitter Array methodology for improving GPR reflections
Bullo, Darío Ezequiel
CLUTTER
GPR
NOISE
PHASED ARRAY
REFLECTION IMPROVEMENT
SYNTHETIC EMITTER ARRAY
title_short 2D Synthetic Emitter Array methodology for improving GPR reflections
title_full 2D Synthetic Emitter Array methodology for improving GPR reflections
title_fullStr 2D Synthetic Emitter Array methodology for improving GPR reflections
title_full_unstemmed 2D Synthetic Emitter Array methodology for improving GPR reflections
title_sort 2D Synthetic Emitter Array methodology for improving GPR reflections
dc.creator.none.fl_str_mv Bullo, Darío Ezequiel
Bonomo, Nestor Eduardo
author Bullo, Darío Ezequiel
author_facet Bullo, Darío Ezequiel
Bonomo, Nestor Eduardo
author_role author
author2 Bonomo, Nestor Eduardo
author2_role author
dc.subject.none.fl_str_mv CLUTTER
GPR
NOISE
PHASED ARRAY
REFLECTION IMPROVEMENT
SYNTHETIC EMITTER ARRAY
topic CLUTTER
GPR
NOISE
PHASED ARRAY
REFLECTION IMPROVEMENT
SYNTHETIC EMITTER ARRAY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Synthetic 1D-arrays of emitters are used in the area of GPR to improve primary reflections that in single-offset profiles show low continuity and amplitude due to the interference of clutter and noise. In this methodology, at each array position along the survey line, a series of single emitter-receiver measurements is performed, keeping the position of the receiver constant and placing consecutively the emitter at the positions of the nodes of the array grid. A definite phase relation between the traces that constitute each common receiver gather is established and used to shift them in time with respect to the reference-offset trace, and the results are averaged. The phase relations are defined in order to superpose constructively the primary reflections, and reduce the random noise and clutter. The 1D synthetic procedure is equivalent to narrowing the transmitted electromagnetic wave-front along the direction of a real 1D array, which reduces the interference produced by reflectors located in formerly illuminated regions of the soil, and directing the field along an emitters-reflector-receiver path that maximizes the amplitude of the primary reflection at the position of the receiver with respect to the other reflections. In this article, a previously developed 1D-array method is extended to 2D-arrays, and the results of the 2D extension are analyzed and compared to the results of the 1D-array, Common-Midpoint and Single Offset techniques. The proposed 2D procedure considers a rectangular, homogeneous geometry for the array and a simple phase-relation between the component traces. In addition to directing the wave-front towards the target, these settings make possible to reduce the width of the wave-front along both axes of the array, which is expected to enhance the 1D results. Since the dimensionality increases in the 2D geometry, the number of traces in the summation grows significantly, which should also improve the final result. As a part of the 2D methodology, a variable that represents the reflection improvement, with respect to the Single Offset method, is defined and optimized as a function of the phase differences between adjacent traces along both directions of the array and the position of the emitters-receiver group along the survey line. A final data-section is generated from the optimal values found in this step. To evaluate the results of these methodologies, two basic types of reflections are analyzed: diffractions produced by small objects and reflections at extensive interfaces. Numerical and laboratory data are considered. The effects of different numbers of emitters and distances between them on the results are investigated, in order to obtain the best result. The 2D method shows noticeable enhancements of the continuity and amplitude of the primary reflection with respect to the other methods.
Fil: Bullo, Darío Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Bonomo, Nestor Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description Synthetic 1D-arrays of emitters are used in the area of GPR to improve primary reflections that in single-offset profiles show low continuity and amplitude due to the interference of clutter and noise. In this methodology, at each array position along the survey line, a series of single emitter-receiver measurements is performed, keeping the position of the receiver constant and placing consecutively the emitter at the positions of the nodes of the array grid. A definite phase relation between the traces that constitute each common receiver gather is established and used to shift them in time with respect to the reference-offset trace, and the results are averaged. The phase relations are defined in order to superpose constructively the primary reflections, and reduce the random noise and clutter. The 1D synthetic procedure is equivalent to narrowing the transmitted electromagnetic wave-front along the direction of a real 1D array, which reduces the interference produced by reflectors located in formerly illuminated regions of the soil, and directing the field along an emitters-reflector-receiver path that maximizes the amplitude of the primary reflection at the position of the receiver with respect to the other reflections. In this article, a previously developed 1D-array method is extended to 2D-arrays, and the results of the 2D extension are analyzed and compared to the results of the 1D-array, Common-Midpoint and Single Offset techniques. The proposed 2D procedure considers a rectangular, homogeneous geometry for the array and a simple phase-relation between the component traces. In addition to directing the wave-front towards the target, these settings make possible to reduce the width of the wave-front along both axes of the array, which is expected to enhance the 1D results. Since the dimensionality increases in the 2D geometry, the number of traces in the summation grows significantly, which should also improve the final result. As a part of the 2D methodology, a variable that represents the reflection improvement, with respect to the Single Offset method, is defined and optimized as a function of the phase differences between adjacent traces along both directions of the array and the position of the emitters-receiver group along the survey line. A final data-section is generated from the optimal values found in this step. To evaluate the results of these methodologies, two basic types of reflections are analyzed: diffractions produced by small objects and reflections at extensive interfaces. Numerical and laboratory data are considered. The effects of different numbers of emitters and distances between them on the results are investigated, in order to obtain the best result. The 2D method shows noticeable enhancements of the continuity and amplitude of the primary reflection with respect to the other methods.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/181734
Bullo, Darío Ezequiel; Bonomo, Nestor Eduardo; 2D Synthetic Emitter Array methodology for improving GPR reflections; Elsevier Science; Journal Of Applied Geophysics; 159; 12-2018; 285-293
0926-9851
CONICET Digital
CONICET
url http://hdl.handle.net/11336/181734
identifier_str_mv Bullo, Darío Ezequiel; Bonomo, Nestor Eduardo; 2D Synthetic Emitter Array methodology for improving GPR reflections; Elsevier Science; Journal Of Applied Geophysics; 159; 12-2018; 285-293
0926-9851
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0926985118302453
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jappgeo.2018.08.005
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847977051042086912
score 13.121305